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EXECUTIVE SUMMARY

Simple Bayesian biomass dynamics models can provide reliable estimates of stock depletion and
maximum sustainable yield to inform management of data-limited orange roughy fisheries on the
high seas. In orange roughy, recruitment to the spawning stock is lagged 30-40 years relative to
current biomass. In this paper, a simple delay difference model that separates recruitment from
other dynamics is developed and applied to assess whether the inclusion of a recruitment lag
presently affects status evaluation for orange roughy stocks within the SPRFMO Convention Area.
The results indicated consistency in stock status estimates between a standard surplus production
model and a delay-difference model implemented with and without a 38-year lag on recruitment. This
confirms the consistency of a cohort aggregated modelling approach and the reliability of biomass
dynamic models for stock assessments of orange roughy fisheries within SPRFMO, where reliable
and representative age data and fisheries-independent indices of abundance are not yet available.

OBJECTIVES

This is the Final Research Report for project SEA201622, and constitutes partial fullfilment of the
following project deliverables as detailed in the proposal:

Overall Objective

1. To provide scientific services to support MPIs contribution to developing and implementing
management measures for the South Pacific Regional Fisheries Management Organisation
(SPRFMO)

Specific Objective

1. To finalise spatially disaggregated CPUE models and stock assessment models for all orange
roughy management units in the western SPRFMO Area with sufficient data.
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1. Introduction

The assessment of orange roughy Hoplostethus atlanticus stocks on the high seas is complicated
by data availability and stock structure uncertainties. Within the South Pacific Regional Fisheries
Management Organisation (SPRFMO) Convention Area, there are currently no reliable age data and
fisheries-independent (i.e., trawl and/or acoustic surveys) indices of stock abundance for orange
roughy. Commercial catch per unit effort (CPUE) data are the principal information source available
to evaluate stock status. A data-limited approach was developed and implemented to evaluate stock
status and fisheries sustainability (Roux et al. 2017). This approach combines the estimation of
spatially-disaggregated CPUE indices of stock abundance and the fitting of a cohort-aggregated
Bayesian biomass dynamics model (BDM) to estimate biomass trajectory and evaluate stock status.
Until fisheries-independent abundance and age data are available, it has the potential to provide
reliable estimates of stock depletion and maximum sustainable yield (MSY) reference points to inform
management decisions for SPRFMO orange roughy stocks.

The applicability and validity of the BDM model to orange roughy was demonstrated by McAllister
and Edwards (2016). In that study, a similar cohort-aggregated state-space biomass dynamics
model (BSP) was fitted to an aggregate of stock trend data (including both fishery-dependent and
fishery-independent indices) for a New Zealand domestic stock (East Chatham Rise orange roughy).
The BSP model provided good fits, informative estimates of stock size, and estimates of depletion
(relative to MSY or the carrying capacity) similar to those estimated by an age-structured production
model such as CASAL.

Stock productivity in BDM is expressed as a single parameter r (the maximum intrinsic rate of
population increase as biomass approaches zero), which is offered as an informative prior constructed
using life history data (i.e., maturity, growth, recruitment and natural mortality information). In long-
lived species such as orange roughy, recruitment to the spawning stock is lagged 30-40 years relative
to the current biomass (Cordue 2014; Dunn 2007). Because of this, the absence of a recruitment lag
in the BDM model structure may lead to bias in fisheries that have been occurring for longer than the
age of recruitment. In this paper, we developed and applied a delay-difference model implemented in
BDM to 1) test the validity of the equilibrium-level recruitment assumption; and 2) assess whether the
inclusion of a recruitment lag presently affects status estimation for orange roughy fisheries within
SPRFMO. This is done using a case study example focusing on the Central Louisville Ridge orange
roughy stock.

2. Model description

Here we present a model of the form:

Bt+1 = g(Bt) + r(Bt)

where g() is a growth function accounting for somatic growth and mortality, and r() is a recruitment
function. Separating recruitment from other dynamic processes distinguishes this model class from
other biomass dynamic models (such as the logistic surplus production model) and gives a more
intuitive representation of this important determinent of the populations response to harvesting.

The growth function is most easily represented as a simple linear predictor:

g(B) = ψ ·B · (1−H)

where H is the harvest rate. The recruitment function can take a number of forms, incluing a constant
recruitment level. For this study we assumed a Berton-Holt function, which has more realistic
reference point values:

r(B) =
α ·B

1 + β ·B
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Since both g(B) and r(B) are functions of B, we assuming that B represents both the recruited and
mature sections of the population biomass (i.e. that the maturation and selectivity ogives are the
same), which is a common assumption for cohort aggregated models of this type. The model is best
formulated as a proportion of K, with notation xt ≡ Bt/K, which avoids high correlations between
states and the carrying capacity, thereby increasing the rate of convergence of MCMC sampling:

xt+1 = ψ · xt · (1−Ht) +
α · xt

1 + β · xt
(1)

where H = C/(x ·K) is the catch relative to available biomass and with initial condition x0. The
recruitment parameters are calculated using steepness h:

α =
4h

ρ(1− h)
(2a)

β =
5h− 1

1− h
(2b)

where ρ is a scalar such that r(x = 1) ·ρ = 1; i.e. the recruitment at unexploited (equilibrium) carrying
capacity multiplied by ρ equals one. To ensure an equilibrium at K it is necessary for r(x = 1) = 1−ψ
and therefore ρ = (1− ψ)−1.

An advantage of this class of model is that it can easily incorporate a recruitment lag by simply
re-writing the dynamic equation as:

xt+1 = ψ · xt · (1−Ht) +
α · xt−a+1

1 + β · xt−a+1
(3)

where a ≥ 1 is the age at recruitment.

2.1. Reference points

Here we derive the depletion relative to K at maximum sustainable yield (xMSY ). To find the
equilibrium harvest rate we set xt+1 = xt in equation 1 and solve for H to obtain:

H0(x) = 1− 1

ψ
+
r(x)

ψ · x
(4)

Then to find xMSY we solve the equation

d

dx
(H0 · x) = 0

assuming the second derivative is less than one at this point (i.e. it is a maximum). For the model
described here:

d

dx
(H0 · x) = 1− 1

ψ
+

α

ψ · (1 + β · x)2

which implies that:

xMSY =
1

β
·
(√

α

1− ψ
− 1

)
(5)

We note that since this is an equilibrium condition, it is valid even if there is assumed to be a
recruitment lag (since we are assuming that xt = xt−a). The harvest rate at MSY is obtained from
substituting equation 5 into equation 4, and MSY is then:

MSY = H0(xMSY ) · xMSY ·K (6)

= K ·

((
1− 1

ψ

)
· xMSY +

r
(
xMSY

)
ψ

)
(7)

The productivity function, along with xMSY is shown in figure 1.
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Figure 1: Sustainable harvest rate as a function of depletion x, with maximum shown at
xMSY = 0.22.

2.2. Prior specifications and estimation framework

Estimation was carried out within a Bayesian state-space framework using MCMC, for the parameter
set θ = {ψ,K, x0, q}, where q is the catchability for the single available abundance index I. The
model can be written as:

x̄t+1 = g(xt) + r(xt)

xt ∼ LN(ln(x̄t)− σ2
[p]/2, σ[p])

It ∼ LN(ln(q · xt)− σ2
[o]/2, σ[o])

where x̄ is the deterministic expectation of the depletion, and LN(.) refers to the log-normal distribu-
tion. These distriubtions are formulated so as to have expectations: E[x] = x̄, and E[I] = q · x. The
initial depletion x0 also follows a log-normal distribution with variance σ2

[p] and expectation E[x0] = 1.
Following the approach taken in recent applications of this type of model, no attempt was made
to estimate the observation or process error variances. Instead, the standard errors were fixed on
input at σ[p] = 0.05 and σ[o] = 0.2. The catchability scalar was calculated as a “nuisance” parameter.
These assumptions follow those made by Roux et al. (2017).

Assumed life-history parameters are listed in table 1. Catch and abundance data are listed in table 2
and plotted in figure 2.

It was necessary to specify priors for ψ and K. A uniform prior (with wide bounds) was assumed for
ln(K), which is proportional to 1/K and therefore gives lower weight to higher K values.

ln(K) ∼ U(., .)

with the upper and lower bounds for ln(K) chosen subjectively so as to not impinge of the parameter
space explored during estimation.

A prior on ψ can be derived from life-history data in the following manner. Assuming recruitment
and maturity occur according to the same ogive, we first calculate the average mass increment of
recruited fish:

w+ =
1

n

∑
a

wa

wa−1
pama

where w, p and m are the mass, number per recruit and maturity at age respectively. The expected
ψ represents combined effects of somatic growth and natural mortality:

E[ψ] = exp(−M)(1 + w+)
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Figure 2: Input catch and abundance data.

which also gives an implicit prior for ρ from our assumption of equilibrium at K. Since recruitment at
equilibrium is positive, we can also infer that ψ < 1. From the available life-history data (table 1), we
calculated E[ψ] = 0.986. It is difficult to specify an informative prior for ψ that will allow mixing so
close to the upper bound. We therefore used the logit transform, with an informative normal prior:

logit(ψ) ∼ N(µ, 1)

Although the probability density function for ψ can be defined, there is no closed form analytical
solution for the expected value in terms of µ (Johnson 1949), and we therefore cannot back-calculate
a value for µ from E[ψ]. However it is possible to approximate the inverse-logit function using a
normal cumulative density Φ(λ · ψ) with λ = π/5.35. To find µ, we can then solve:

E[ψ] ≈
∫

Φ(λ · z) ·N(z;µ, 1) dz = Φ

(
µ√

λ−2 + 1

)
which gives µ = 4.318. Using this paramaterisation, the prior for ψ is shown in figure 3. Values for ρ
and the α recruitment parameter were sampled from the posterior assuming a fixed steepness (table
1):

ρi =
1

1− ψi

αi =
4h

ρi(1− h)

where i represents an independent posterior sample from the MCMC chain.

3. Model fits and outputs

The model was written using the Stan modelling language (https://github.com/stan-dev/rstan),
and executed within the bdm R-package (https://github.com/cttedwards/bdm). Three model
runs were performed using the data listed in tables 1 and 2:

1. Delay-difference model (Base model; equation 1)
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Figure 3: Prior distribution of ψ obtained from life-history data with E[ψ] = 0.986.

Table 1: Life-history data for orange roughy

Parameter Notation Value

Asymptotic age (y) a∞ 130
Natural Mortality M 0.045
Age at maturity (y) amat 38
Growth (von Bertalanffy) l∞ 37.63
(cm) k 0.065

t0 -0.5
Length-weight a 0.0921

b 2.71
Recruitment steepness h 0.75
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Table 2: Catch and abundance data from Louiseville Central for model fitting

Year Catch (tonnes) Abundance Index

1993 25.000 1.000
1994 657.000 0.895
1995 9566.000 0.817
1996 1889.000 0.502
1997 1277.000 0.487
1998 760.000 0.499
1999 712.500 0.395
2000 331.663 0.421
2001 371.472 0.401
2002 251.419 0.371
2003 443.464 0.340
2004 508.693 0.340
2005 629.621 0.383
2006 271.892 0.453
2007 117.008 0.389
2008 0 –
2009 0 –
2010 371.000 0.426
2011 101.000 0.353
2012 185.000 0.434
2013 215.000 0.352
2014 571.000 0.449
2015 341.000 0.514

2. Delay-difference model with a lag of a = amat (equation 3)

3. Surplus production model, similar in approach to that applied by Roux et al. (2017)

All runs assumed the same depletion at MSY (i.e. xMSY = 0.224).

For each model fit, four MCMC chains were run, each of 3000 iterations, with the first half of each
chain discarded. Convergence diagnostic plots for the base model are shown in figure 4, with the fit
in figure 5. Both indicate good convergence. The resultant estimated depletion dynamics are shown
in figure 6a. Comparitive plots of the depletion dynamics are also shown for the alternate model runs
in figures 6b and 6c.

4. Discussion and Conclusions

The results demonstrate consistency in stock status estimates between a biomass dynamics model
(BDM) used in SPRFMO orange roughy stock assessments (Roux et al. 2017) and a delay-difference
model implemented with and without a 38-year lag on recruitment.

The delay-difference model structure allowed to distinguish recruitment from other dynamics pro-
cesses to provide a more realistic representation of the likely response of orange roughy to harvesting.
The absence of recruitment lag effects was expected in this case, because the fishery for orange
roughy on the central Louisville Ridge only started in the mid-1990s. Since the ages at recruitment
and maturity for orange roughy are greater than 30 years, the fishery has yet to impact the new
recruits (i.e., all recruits to the fishery so far have arisen from spawning biomasses yet unimpacted
by harvesting). The same the same conditions apply to all SPRFMO orange roughy fisheries.
Only exception within SPRFMO is the Northwest Challenger fishery, which is nearing 35 years. A
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Figure 4: Trace, cumulative sum and (stacked) histogram plots of estimated parameters
for fit of the base model to orange roughy data.
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Figure 5: Base model fit to catch rate index. The predicted index is shown as a median
value with 95% credibility intervals.

precautionary approach for future projections for Northwest Challenger orange roughy therefore,
would be to implement a delay-difference model with recruitment lag alongside BDM, when exploring
alternative harvest rate options.

This paper confirms that the assumption of equilibrium recruitment is presently valid for orange
rough stocks within the SPRFMO Convention Area. Thus, until reliable and representative age data
and fisheries-independent abundance indices are available for these fisheries, stock assessments
performed using simple biomass dynamics models can provide reliable estimates of stock status and
reference points on which to base science advice for management.

There are several advantages in implementing simple Bayesian state-space production models for
stock assessments of data-limited orange roughy on the high seas. These include limited complexity,
ease of application, flexibility and high predictive performance. Limited complexity ensures that the
results can be easily interpreted and communicated for enhanced transparency. Ease of application
and low data requirements make this class of models practical in that the assessments can be easily
updated. The models implemented herein have demonstrated flexibility to fit and predict annual
changes in the abundance data (McAllister and Edwards 2016), allowing the testing of simple and
straightforward assumptions with high predictive performance.
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(a) Base model run showing depletion relative to xMSY .
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(b) Comparison of base model (Lag = 1) with the model with lagged recruitment (Lag = 38).
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(c) Comparison of base model (DD) with the surplus production model applied by Roux et al. (2017).
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Figure 6: Estimated depletion from alternate model runs. The mean and 95% credibility
intervals are shown.
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Appendix: Stan model code

data {

int T;

int I;

int lag;

real index[T,I];

real harvest[T];

real h;

real sigmao[T,I];

real sigmap;

}

parameters {

real<lower=3,upper=30> logK;

real psi_logit;

real<lower=0> x[T];

}

transformed parameters {

real q[I];

// variance terms

real sigmao2[T,I];

real sigmap2;

real rho;

real alpha;

real beta;

real psi;

psi = inv_logit(psi_logit);

rho = 1/(1 - psi);

alpha = 4*h / (rho * (1 - h));

beta = (5*h - 1) / (1 - h);

for(t in 1:T)

for(i in 1:I)

sigmao2[t,i] = square(sigmao[t,i]);

sigmap2 = square(sigmap);

// compute mpd catchability assuming

// variable sigmao over time assuming

// uniform prior on q

{

real sum1;

real sum2;

real p;

for(i in 1:I){

sum1 = 0.0;

sum2 = 0.0;

p = 0.0;

for(t in 1:T){

if(index[t,i]>0.0 && x[t]>0.0) {

sum1 = sum1 + log(index[t,i]/x[t])/sigmao2[t,i];

sum2 = sum2 + 1/sigmao2[t,i];

p = p + 1.0;

}

}

if(p>2.0) { q[i] = exp((0.5 * p + sum1) / sum2);

} else q[i] = 0.0;

}

}

}

model {

// prior densities for

// estimated parameters
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// ********************

logK ~ uniform(3.0, 30.0);

psi_logit ~ normal(4.318,1);

#psi ~ beta(1.123611, 0.01226281);

// state equation

// **************

{

real H;

real r;

real mu;

real x_lag;

x[1] ~ lognormal(log(1.0) - sigmap2/2, sigmap);

for(t in 2:T) {

if(t <= lag) { x_lag = x[1];

} else x_lag = x[t-lag];

H = fmin(exp(log(harvest[t-1]) - logK - log(x[t-1])), 1.0);

r = alpha * x_lag / (1 + beta * x_lag);

mu = psi * x[t-1] * (1 - H) + r;

if(mu > 0.0) mu = log(mu) - sigmap2/2;

else mu = log(0.01) - sigmap2/2;

x[t] ~ lognormal(mu, sigmap);

}

}

// observation equation

// ********************

{

real mu;

for(i in 1:I){

for(t in 1:T){

if(index[t,i]>0.0 && x[t]>0.0 && q[i]>0.0) {

mu = log(q[i]*x[t]) - sigmao2[t,i]/2;

index[t,i] ~ lognormal(mu, sigmao[t,i]);

}

}

}

}

// apply penalty for H>0.95

// ************************

for(t in 1:T){

real H_; H_ = harvest[t]/exp(log(x[t]) + logK);

if(H_>0.95) {

target += -log(H_/0.95) * (1/sigmap2);

}

}

}

generated quantities {

real biomass[T];

real depletion[T];

real harvest_rate[T];

real current_biomass;

real current_depletion;

real current_harvest_rate;

real msy;

real depletion_at_msy;

real biomass_at_msy;
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real harvest_rate_at_msy;

real observed_index[T,I];

real predicted_index[T,I];

for(t in 1:T) {

biomass[t] = x[t] * exp(logK);

depletion[t] = x[t];

harvest_rate[t] = harvest[t]/exp(log(x[t]) + logK);

}

current_biomass = biomass[T];

current_depletion = x[T];

current_harvest_rate = harvest_rate[T];

depletion_at_msy = (1 / beta) * (sqrt(alpha / (1 - psi)) - 1);

biomass_at_msy = depletion_at_msy * exp(logK);

harvest_rate_at_msy = 1 - 1 / psi + (alpha * depletion_at_msy / (1 + beta * depletion_at_msy)) / (psi * depletion_at_msy);

msy = harvest_rate_at_msy * biomass_at_msy;

for(i in 1:I){

for(t in 1:T){

observed_index[t,i] = index[t,i];

predicted_index[t,i] = q[i]*x[t];

}

}

}
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