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Key changes to the SC11-DW07 Modelling vulnerable marine ecosystem (VME) indicator taxa
submitted 12" August 2023

New Zealand submitted SC11-DWO07 Modelling vulnerable marine ecosystem (VME) indicator taxa
on the 12" of August 2023. A revised (rev1) version was submitted on the 7" of September,
including minor changes throughout the manuscript. The key changes in the rev1 version are as
follows:

e General tidy up, including references.

e Providing the necessary background information to establish the differences between the
habitat suitability index (HSI) model outputs (HSI linear, HSI ROC-linear, HSI Power-mean).

e C(Clarifying that only one HSI model output, HSI Power-mean, has been used in the past to
estimate (or proxy for) VME indicator taxa abundance.

o Referring to Deep Towed Imaging System (DTIS) sites, instead of points.

e Clarifying that the 0.4 Pearson’s R value is not a threshold but rather a subjective indication
of good model fit.

e Replacing occurrences of “Gorgonacea Alcyonacea” with “Gorgonian Alcyonacea” to ensure
consistency of terms across the manuscript.

e Noting that improvements have been recognised regarding the use of VME indices in the
North-East Atlantic.

e Improved labels and captions for all figures displaying Coefficient of Variation:

O Figure4
0 Figure A3-2, A3-4, A3-6, A3-8, A3-10, A3-12, A3-14, A3-16, A3-18, A3-20, A3-22, A3-
24, A3-26, A3-28

e Improved labels and captions for all scatter plots to ensure consistency of terms throughout
the manuscript:

Figure 6

Figure 10
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O Figure A6-2, Figure A6-4, Figure A6-6
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1. Purpose

The purpose of this paper is to update the Scientific Committee (SC) on the development of abundance
models for Vulnerable Marine Ecosystem (VME) indicator taxa and outline their potential application,
including for the identification of VMEs. This work will help reduce uncertainties in risk assessments
for benthic habitats and VMEs and inform SC advice on the ongoing appropriateness of the
management measures to ensure CMM-03-2023 continues to achieve its objective and the objectives
of the Convention.

2. Background

Spatial management areas were established under CMMO03-2019 to protect large proportions of
suitable habitat for VME indicator taxa from the impacts of bottom fishing, while allowing bottom
fishing within defined bottom trawl management areas (BTMAs). The design of the BTMAs were
informed by habitat suitability models for VME indicator taxa (Table 1), which predict the suitability
of a location for a species, or group of species, based on their observed relationship with
environmental conditions (Guisan and Zimmermann 2000; Elith and Leathwick, 2009). Habitat
suitability models for VME indicator taxa have been progressively developed over the years for the
SPRFMO Convention Area, or parts thereof (Anderson et al. 2016a, b, Rowden et al. 2017, Georgian
et al. 2019. Stephenson et al. 2021, SC10-DWO05). While habitat suitability models have been used
within the SPRFMO context to predict the distribution of VME indicator taxa, they remain data-limited
and do not generally include any information regarding the expected abundance of VME indicator
taxa. Past approaches to try to mitigate this shortcoming using habitat suitability models have

included:

e The assumption of a linear relationship between abundance and raw habitat suitability indices

(hereby referred to as HSI-linear), an assumption deemed highly uncertain, probably variable,

and more complex than a simple linear relationship (SCO7-DW17-revl, SC8-DWO07-revl).

e The removal of cells with low habitat suitability index scores (HSI-linear) applying a calculated

cutoff value (using the Receiver Operating Characteristics (ROC) curve)) indicating the

presencerelative ef—suitability ofle habitat in a binary setting (SC8-DWO07-revl) (hereby
referred to as HS/ ROC-linear).

e The transformation of habitat suitability index scores (HSI-linear) using power curves (hereby

referred to as HSI Power-mean), which were used as estimates for abundance in the 2020
Bottom Fishing Impact Assessment (SC8-DW07-rev1).

Recognising the limitations of habitat suitability models, and in particular their limited ability to infer
taxon abundance, the 9™ meeting of the SPRFMO SC noted that the “estimation of the fraction of VME
SC10-DWOS5-5 indicator taxa abundance protected [by the spatial management measures] depends
strongly on the ability of the available habitat suitability models to infer abundance, noting that
abundance models using survey presence-absence or abundance data and relevant
environmental/benthic data could improve this accuracy” (para 71 of the SC9-Report). Consequently,
the subtaskitem “Develop abundance models for VME [indicator] taxa” was added to the SC multi-
annual workplan at the 10™ SPRFMO Commission meeting, with a 2022+ timeline (Annex 4a of
COMM10- Doc06 rev2).




Following the 10™ SPRFMO Commission meeting, New Zealand trialled two methods for developing
abundance models for VME indicator taxa: 1) a data-driven modelling approach underpinned by
(limited) abundance data, and 2) a principles-based approach, i.e., where distribution of abundance
of taxa are based on known or estimated relationships informed by experts.

The data-driven approach was trialled for two VME indicator taxa: Goniocorella dumosa (representing
the order Scleractinia, stony corals) and Demospongiae (representing the phylum Porifera, sponges).
Both abundance models produced credible predictions of spatial distributions of abundance with high
correlations between modelled predictions and observed abundances (noting that these same data
were also used to train the models).

A preliminary trial of abundance modelling using a principles-based approach (having only received
input from a subset of experts, 5 out of 22 experts) provided spatial estimates which visually appeared
plausible, but which performed no better at predicting abundance than previously developed habitat
suitability models. It was decided that further work was needed to fully assess the appropriateness of
this approach, including the integration of responses from a greater number of experts (representing
a variety of expertise and knowledge of the taxa) and possibly combining expert opinion using
alternative elicitation methods than those tested. It was also decided that where sufficient abundance
data exist to develop robust statistical models, a data-driven approach should be prioritised for
estimating the distribution of VME indicator taxa abundances.

That results of that work was presented to the 10™ meeting of the SPRFMO SC in SC10-DWOS.
Following discussion of SC10-DWQS5, in its report SC10 (para 122 SC10-Report) :

- Recommended the application of the data-driven approach described in this paper [in
reference to SC10-DWO05] to estimate spatial predictions of abundance for VME indicator taxa
for which sufficient abundance data exists.

- Recommended further exploring the application of the principles-based approach where
abundance data is insufficient to apply a data-driven approach until sufficient abundance data
becomes available.

In response to recommendations of SC10, this paper presents abundance models for 15 VME indicator
taxa within the evaluated area of the SPRFMO Convention Area using a data-driven approach and 4
taxa using a principles-based approach (Table 1Table-1). Additionally, to assess the utility of existing
habitat suitability models and abundance models developed by this work for informing management
decisions we also explore: 1. the relationship between models and historic benthic bycatch; and 2. the
use of abundance models to develop VME indices.

As part of the on-going efforts to model abundance of VME indicator taxa within the SPRFMO
Evaluated Area, a study to develop a spatial model using the vector autoregressive spatio-temporal
(VAST) modelling platform (Thorson, 2019) was performed with Demospongiae selected as study
taxon. Initial results from this case study are presented here. -This work was funded separately by the
EU, but under the same “Develop abundance models for VME [indicator] taxa” task in the SC multi-
annual workplan.

Historic benthic bycatch data provide information on where VME indicator taxa are known to occur
(or known to have previously occurred). Historic bycatch data therefore represent an opportunity to



evaluate correlations between abundance models and habitat suitability models (when used as
estimates or proxies for abundance) for VME indicator taxa distributions and historical records of
benthic bycatch biomass to potentially validate the abundance models. This work addresses the SC
multi-annual workplan tasks to “Investigate the relationship of benthic bycatch to abundance models
of VME taxa” and to “Investigate the relationship between benthic bycatch from fishing vessels
(including encounter events) and the habitat suitability models” (COMM11-Report Annex-4a).

The development of abundance models also potentially allows new applications that were not
possible using habitat suitability models. Efforts by other Regional Fisheries Management
Organisations to present SAls on VMEs have combined the outputs of VME vulnerability assessments
with spatially explicit distributions of VMEs and VME indicator taxa (and estimated levels of
confidence), which has facilitated the mapping of a “VME index” (Morato et al 2018, Gros et al 2023.
Here we provide an exploratory development of VME indices for 15 of the 17 newly developed VME
indicator taxa, based on the methods developed by Gros et al., 2023 and adapted by Stephenson et
al., (in prep) using modelled distribution data.

Table 1 | Existing Habitat Suitability Models (providing the source) and newly developed Abundance Models
(presented in this paper, shaded in light green), including approach taken, for each VME indicator taxon in the
SPRFMO Evaluated Area.

::dc: VME indicator taxon Habitat Suitability Model Abundance Model
Data-driven  Principles-based
. Demospongiae Stephenson et al. 2021 Y -
PFR | Porifera Hexactinaellida Stephenson et al. 2021 Y -
Enallopsammia rostrata Stephenson et al. 2021 - Y
css | Scleractinia Goniocorella Dumosa Stephenson et al. 2021 Y Y
Madrepora oculata Stephenson et al. 2021 - Y
Solenosmilia variabilis Stephenson et al. 2021 Y Y
AQZ Antipatharia Stephenson et al. 2021 Y -
AJZ  Alcyonacea Unpublished Y -
GGW Gorgonian Stephenson et al. 2021 Y -
Alcyonacea
NTW | Pennatulacea Stephenson et al. 2021 Y -
ATX  Actinaria SC10-DWO05 Y -
ZOT Zoantharia SC10-DWO05 Y -
HQZ Hydrozoa SC10-DWO05 Y -
AXT  Stylasteridae Stephenson et al. 2021 Y -
BZN | Bryozoa SC10-DWO05 Y -
BHZ Brisingida SC10-DWO05 Y -
CWD Crinoidea SC10-DWO05 Y -
3. Methods

3.1 Area of study

All the modelling work presented in this paper, hereby referred as the study area, covers the extent
of the SPRFMO Evaluated Area (Figure Figure—2), including the multiple (New Zealand, Australia,
Norfolk Island, New Caledonia, Fiji, Tonga, Cook Islands and French Polynesia) Exclusive Economic



Zone (EEZ) areas that are partly included within it. Any areas with depths outside of the 200-3,000m
range are not part of the study area (Stephenson et al., 2021).

Figure 1 | SPRFMO Convention Area (light green area) including the extent of the Evaluated Area under SC9-
DW10 (red boundaries) with all numbered Fisheries Management Areas (FMAs) defined under SPRFMO
CMMO03-2023 (pink polygons). FMAs numbered as 1) West Norfolk, 2) North Lord Howe Rise, 3) South Lord
Howe Rise, 4) Northwest Challenger, 5) North Louisville Ridge, 6) Central Louisville Ridge, 7) South Tasman
Rise, 8) South Louisville Ridge, and 9) Westpac Bank.

3.2 Modelling spatial estimates of density

The approach presented in SC10-DWO5 for modelling the distribution of abundance is a two-part
density (or hurdle) model. Briefly, density models firstly fit a binomial model for probability of
occurrence, followed by a separate model with a Gaussian distribution to estimate density for
locations where presence was recorded. Both models are then multiplied together (often referred to
as ‘hurdled’, see Stephenson et al., 2021b) to obtain spatial estimates of density (number of
individuals per square kilometre) conditional on presence (hereafter referred to as ‘density’). The
habitat suitability models of VME indicator taxa from both Stephenson et al. (2021a) and SC10-DW05
are binomial models and the first component of the models created here were developed in a similar
way. The distinction here is that the image-based data used to train the data-driven models herein is

presence-absence, so no pseudo-absence or target-group background absence generation methods

For the second component of the hurdle model, a data-driven approach and a principles-based
approach (as described in SC10-DWO05) were used (Table 1Fable—1). As part of the data-driven
approach, VME indicator taxa abundance data and spatially explicit environmental variables were
analysed in a statistical model. The spatial outputs of the second component of the density model
(conditioned to recorded presence for the data-driven approach) were then hurdled (multiplied) with
the predictions of the habitat suitability models to produce spatial estimates of density (number of
individuals per km?). All VME indicator taxa were modelled using the data-driven approach except two
species of stony corals (order Scleractinia), Enallopsammia rostrata and Madrepora oculata (Table
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1Table—1) for which the existing abundance data was deemed insufficient. tasteadHowever,
Enallopsammia rostrata and Madrepora oculata and two other taxa from the order Scleractinia,
Goniocorella dumosa and Solenosmilia variabilis were modelled using a principles-based approach.
The principles-based approach, instead of using taxon occurrence records, used a set of environmental
variables used to constraint taxon-specific suitable habitat by expert knowledge, producing what are
known as relative environmental suitability (RES) models (Kaschner et al., 2006).

As an exploratory exercise, a spatial model was developed using the VAST modelling platform to
predict the density of the class Demospongiae. Both Demospongiae abundance and presence-only
data were combined with a set of environmental variables to produce a spatial representation of the
predicted relative density of Demospongiae. The model included both spatial and environmental
effects.

3.3 Data-driven approach

Biological data

Estimates of density data (number of individuals per km?) for 17 VME indicator taxa (Table 1Fable1)
wereas obtained from a database (Anderson et al., in press.) consisting of records of benthic
invertebrates imagery data collected using NIWA’s Deep Towed Imaging System (DTIS) at 949 seafloor
sites compiled across 20 voyages: 358 sites from five surveys of Chatham Rise (Bowden et al. 2019),
172 sites from Campbell Plateau (Roberts et al. 2018, Anderson et al. 2020), 42 sites from the
Challenger Plateau (Nodder 2007) 118 sites from the Louisville Seamount Chain (Clark et al. 2015), 18
sites from the Macquarie Ridge (RV Tangaroa voyage TAN0803) and 21 sites from the Kermadec Ridge
(RV Tangaroa voyage TAN1612) and 61 sites from the Bay of Plenty Southern Kermadec Ridge (RV
Tangaroa voyage TAN1206) (Anderson et al. in press). The training dataset was then limited to sites
within the depth range of the study area (200-3000 m, Stephenson et al., 2021) leaving a total of 832
records with abundance data available for training the models, with 138 (17%) of those peints-sites
being located within the boundaries of the evaluated area of the SPRFMO Convention Area (Figure
Figure-2). All 138 DTIS peints-sites in the SPRFMO Convention Area are located within FMAs, with 17
being located within the Northwest Challenger FMA (2%), 3 within the Westpac Bank FMA (0.4%), 73
within the North Louisville Ridge FMA (9%), and 45 within the Central Louisville Ridge FMA (5.4%).



These data included presence-absence data and estimates of density for all VME indicator taxa, which
are included in Annex 1 - Deep Towed Imaging System (DTIS) DataAnnexi.

Figure 2 | DTIS sites (red dots) that provided estimates of VME indicator taxa abundance data. Black lines
indicate the boundaries between the SPRFMO Evaluated Area and the multiple Exclusive Economic Zones.

Environmental data

The same environmental variables were used as predictors in the density distribution models as those
used for the previously developed habitat suitability models (see open-access publications from
Georgian et al., 2019 and Stephenson et al.,, 2021a for further details), except for an updated
seamounts variable (Clark et al., 2022; Yesson et al., 2011). For each modelled VME indicator taxon, a
subset of the environmental variables that appeared to drive the distribution of each taxon was used
(Table 2Fable-2). Specific environmental variables were included or omitted based on the biology of
modelled taxa. For example, calcium carbonate polymorph saturation state variables were included
for certain taxa, where appropriate. For corals in the order Scleractinia aragonite saturation was
included, whereas for Alcyonacea, for instance, calcite saturation was included (Stephenson et al.,
2021; SC10-DWO5). For density modelling (the second part of the hurdle/density model), a secondary
environmental selection step using an automated variable selection procedure was employed. A
random forest model was fitted with respective suites of taxon-specific environmental variables used
by Stephenson et al. (2021a) and Stephenson et al. (2021b). This method takes account of any co-
linearity between environmental variables through the implementation of a conditional approach to
calculation of variable importance (Ellis et al., 2021; Stephenson et al., 2021b). Explanatory variables



with a relative influence greater than 100 divided by the number of environmental variables provided
were retained for modelling.



Table 2 | Environmental variables used in the modelling of each VME indicator taxon using the data-driven approach. Taxon codes as: Actinaria (ATX), Alcyonacea (AJZ),
Antipatharia (AQZ), Brisingida (BHZ), Bryozoa (BZN), Crionidea (CWD), Demospongiae (DEM), Enallopsammia rostrata (ERO)., Goniocorella dumosa (GDU), Gorgonian
Alcyonacea (GGW), Hexactinellida (HEX), Hydrozoa (HQZ), Madrepora oculata (MOC), Pennatulacea (NTW), Solenosmilia variabilis (SVA), Stylasteridae (AXT), Zoantharia

(zoT).

Environmental variable ATX AlZ
Aragonite saturation state at depth

Calcite saturation state at depth X
Silicate

Dissolved oxygen at depth

BPI-broad

Standard deviation of Slope

Ruggedness

Percent gravel

Percent mud

Particulate organic carbon export X
Seamounts (presence/absence)

Temperature at depth X

AQz

X X X X

BHZ

X X X X

DEM

X X X X X

VME indicator taxon
ERO GDU GGW HEX HQZ MOC NTW SVA AXT Z0T

X X

X

X

X

X X X

X
X X X
X X X X



Density modelling

A bootstrap approach using Boosted Regression Trees (BRT) and Random Forests (RF) models was
used to estimate density using a Gaussian error distribution, noting that the models are conditional
on presence. Bootstrap models were fitted and geographical predictions (1 km x 1 km grid for depths
between 200 and 3000 m) ensembled using the same approach as described in Stephenson et al.
(2021b) (like Stephenson et al., 2021a but without the MaxEnt model contribution). Briefly, final
ensemble models were produced by taking weighted averages of the spatial predictions from each
model (BRT and RF). This procedure generates a two-part weighting for each component of the
ensemble model, taking equal contributions from the overall model performance (R? value derived
from the ‘evaluation’ dataset) and the uncertainty measure (CV) in each cell (see Stephenson et al.,
2021b for further details). Within each bootstrap, spatial predictions from abundance models were
hurdled with (multiplied by) the habitat suitability models (presence-absence) to produce spatial
estimates of density. The accuracy of the spatial density estimates was assessed by comparing the
predicted values with all the available abundance sample data for VME indicator taxa using Pearson’s

correlation measure, where 0.4 is considered good (based—on—a—subjectively—defined
thresheldsubjectively defined). The performance of the models was evaluated at multiple spatial

scales:

- Atthe SPRFMO Evaluated Area level
- At bioregions level, using the bioregions defined in Costello et al. (2017)
- At Fisheries Management Areas (FMAs) level

For comparison, scatter plots and Pearson’s correlation were assessed using the DTIS abundance data
(described above) for the final ensemble models from the densitydata-driven approach_for all
modelled taxa. anre—Existing habitat suitability medel-outputslayers (HSI-linear, HSI ROC-linear),
including those previously used as estimates of (or proxies for) abundance (HSIHSI- Power-meankinear
and-HSIROC linear) (SC8-DWO07-revl) for a subset of all modelled taxa (Antipatharia, Demospongiae,
Gioniocorella dumosa, Gorgonian Alcyonacea, Hexactinellida, Pennatulacea, Solenosmilia variabilis
and Stylasteridae)+{SE8-BWO7revdl)} were also included in the comparison, as an exploratory
exercise.

Environmental coverage

Where predictions in "environmental space" (defined as the multidimensional space when considering
each of the environmental variables as a dimension) occur where sampling is high, we may have more
confidence in the predictions because they are well informed by empirical data. Conversely, where
predictions occur in environmental space with low sampling coverage, we may have less confidence
and predictions need to be carefully interpreted. To account for the lack of biological data used to
predict density in some of the environmental space, a measure of “coverage of environmental space”
(Pinkerton et al., 2010; Smith et al., 2013; Stephenson et al., 2020) was calculated following the same
methodology as outlined by Stephenson et al. (2021a).

Briefly, VME indicator taxa presence-absence data (i.e., from DTIS observations) (Annex 1 - Deep
Towed Imaging System (DTIS) DataAnnex-1) was used to inform variation in sampling density within

the environmental space by combining all presence-data locations with the same number of randomly
selected sample cells from the environmental space (where there were no biological samples). A BRT
model was used to model the relationship between these “present” (true) samples and “absent”



(unsampled) samples for the 12 environmental variables (Table 2¥able-2) used in the data-driven
approach.

The predicted distribution of the coverage of the environmental space is bound between 0-1.
Estimates of 0 indicate very low sampling of the environmental space, whereas estimates of 1 indicate
a very high level of sampling (Stephenson et al., 2020; Stephenson et al., 2021a).

Spatially explicit estimates of environmental coverage were created based on all environmental data
used for the data-driven approach (hereafter ‘combined environmental coverage’). Then, separate
taxon-specific environmental coverage was estimated, based on the environmental variables used for
the density models (Table 2¥able-2). This procedure resulted in one combined environmental
coverage layer and 15 taxon-specific environmental coverage layers.

3.4 Principles-based approach

Relative environmental suitability (RES) modelling is an approach to habitat suitability modelling that
relies on expert knowledge rather than species observation data (Kaschner et al. 2006; Watson et al.,
2013). Expert input is used to constrain suitable habitat based on known relationships between
species presence and a suite of environmental variables. Annex 2 of SC10-DWO05 presented detailed
methods and instructions to gather enough expert knowledge to extend RES methods to estimate
relative density (0-1) for four stony corals (Goniocorella dumosa, Enallopsammia rostrata, Madrepora
oculata, Solenosmilia variabilis). Briefly, a set of instructions and worksheets were developed to gather
expert input, with three input sections provided for:

Selection of environmental variables (relevant to the assessed VME indicator taxa).
Selection of the shape that best describes the perceived relationship between each chosen
environmental variable and VME indicator taxa density. Shapes available for selection
included Trapezoid, Plateau and Linear.

3. Selection of numerical thresholds (absolute and preferred; min and max) that best describe
the relationship between VME indicator taxa density and a given environmental variable.

The initial models (presented in SC10-DWO05) were trialled using responses from 6 experts, from the
22 that were initially approached. Some respondents seemed to misinterpret the provided
instructions, which led to a series of steps taken once the work that led to SC10-DWO05 was completed
(post-August 2022):

1. Experts were approached with queries regarding their original responses to check whether
these were caused by misinterpretation of instructions or not. The number of expert
responses increased from 6 to 8.

2. Additional feedback was used to establish consensus variables, shapes and median threshold
values used for the RES models.

3. The RES models were re-run (for the four stony coral taxa Goniocorella dumosa,
Enallopsammia rostrata, Madrepora oculata, Solenosmilia variabilis) using the additional
feedback gathered during steps 1 and 2.

The updated principles-based approach models for the four stony coral taxa (Goniocorella
dumosa, Enallopsammia rostrata, Madrepora oculata, Solenosmilia variabilis) were then hurdled
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(multiplied) with the Stephenson et al. (2021a) habitat suitability models and model fits assessed
using the same data and process as described for the data-driven approach (Pearson’s
correlation). For comparison, scatter plots and Pearson’s correlation were assessed using the DTIS
abundance data (described above) for the principles-based approach and, as an exploratory

exercise, for existing habitat suitability medel-outputslayers previoushy(HSI-linear and HSI ROC-
linear), despite these layers not having been developed to estimate (or proxy for) relative

abundance-used-as-estimates{orproxiesforl-abundance (HSI-inear-and-HSIROC linear)- (SC8-
DWO07-revl).

3.5 VAST modelling

The vector autoregressive spatio-temporal (VAST) modelling platform is a spatio-temporal modelling
platform designed to support the provision of multiple types of assessments (i.e., stock assessments,
habitat assessments) that often share common core goals to effectively inform fisheries management
(Thorson, 2019). VAST can be applied using an open-source and publicly-available package
(https://www.github.com/james-thorson/VAST/) within the R statistical environment (R Core Team,

2022), which was used for our case study. The VAST package (version 3.10.0) was used to build spatial
models (predicting at a 1 km? resolution grid) for the class Demospongiae including spatial effects
(from nearby observed data) and environmental covariates. Due to having the highest number of
records in the DTIS dataset compiled to inform the development of density models of VME indicator
taxa, and a high number of records in the presence-only data (SC10-DWO05), the class Demospongiae
was deemed appropriate to be used as a study taxon for the VAST modelling approach.

Biological data

Previously compiled and groomed VME indicator taxa presence-only data from Stephenson et al.
(2021a) and observed abundance data (same DTIS dataset used in the density modelling of VME
indicator taxa using a data-driven approach) were used to inform the VAST framework. Pseudo-
absence data was required for model building and was generated using both target-group background
(as performed in Stephenson et al. (2021a)) and random (10x as many presence-only observations)
generation methods (Barbet-Massin et al., 2012; Cerasoli et al., 2017; Chefaoui & Lobo, 2008; Mateo
et al., 2008; Phillips et al., 2009).

Environmental data

A sub-set of environmental variables were identified as suitable to be used in the VAST approach and
subsequently collected from Georgian et al. (2019) and Stephenson et al. (2021a) (percent gravel,
percent mud, slope, bathymetry, presence of seamounts, dissolved oxygen at depth and
temperature). Highly correlated variables to temperature such as silicate at depth and productivity
were discarded to avoid multicollinearity issues when used in a regression model. To reduce the
dimensionality of the large environmental dataset a secondary analysis was performed using a
Principal Components Analysis (PCA) to transform the environmental covariates into a smaller set of
principal components (Goode et al., 2021).

Density modelling

To test the importance of spatial effects and environmental covariates, for each pseudo-absence
generation method (target-group background, random) and for each set of environmental covariates
(standard set, PCA set) models were built:

13



- Including spatial effects only
- Including environmental covariates only
- Including both spatial effects and environmental covariates

Akaike information criterion (AIC), percent deviance explained, and assessment of each model’s
uncertainty was used to select the best performing model with target-group background pseudo-
absences and with randomly generated pseudo-absences. Then, K-fold cross-validation was
performed on the selected models to compare the predictive performance across the pseudo-absence
generation methods. Correlations (Pearson’s and Spearman’s) were used to assess relationships with
the observed data. Root mean square error (RMSE) and average error (AVE) metrics were estimated
to compare magnitude of error between models.

3.6 Investigating the relationship between benthic bycatch biomass and density of

VME indicator taxa

Benthic bycatch data provide an estimate of biomass (weight) of the caught organism/s in a defined
area and/or tow. Density data refer to the number of individuals of a given taxon within an area or
transect. These two metrics are not necessarily correlated, and the likelihood of correlation is greatly
affected by the taxonomic resolution at which the data is grouped. For example, within the class
Demospongiae (demosponges) we find species such as Ecionemia alata (which often grow to ~1 m in
diameter) and Aciculites pulchra (which grow to ~20_ cm wide), which present obvious differences in
terms of relating biomass and number of individuals. Nonetheless, we investigated the relationship
between benthic bycatch data and the density/habitat suitability models of VME taxa. A previously
compiled dataset of benthic bycatch records from bottom trawl fishing vessels within the SPRFMO
Evaluated Area (SC8-DW11) was used to perform the investigation. Raw taxon-specific bycatch
biomass records were assessed against taxon-specific models of density (presented in this paper as
the models developed under the “data-driven” approach) and habitat suitability models (when used
as estimates or proxies for abundance) (HSI-linear and HSI ROC-linear) from Stephenson et al. (2021a)
and SC10-DWO5 using Pearsons's correlation coefficient (Table SFable-10).

Correlations between estimates of the biomass of VME indicator taxa on the seafloor derived from
benthic bycatch and modelled estimates of density derived from DTIS video surveys are potentially
complicated by the taxonomic resolution at which the data are grouped (see example above). In
additional to taxon-specific differences in relationships between biomass and number of individuals,
several other factors, which DTIS data is not subject to, can complicate comparisons between DTIS
and bycatch data, including:

1. The catchability of taxa by bottom trawl gear, where the more readily caught taxa (based on
morpho-characteristics i.e., upright or encrusting) and the gear characteristics (like gear type,
net size, trawl length and trawl speed) may contribute disproportionately to benthic bycatch
biomass associated to a tow.

2. Location-specific catchability where seafloor features and topography may have an influence
on benthic bycatch rates by bottom trawl gear.

3. The potential influence of historical fishing effort on biomass estimates, with highly fished
areas having lower bycatch rates as VME indicator taxa, if previously present, may have been
removed by past fishing events.
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Additionally, estimates of density using DTIS data (as previously described) originate from transects
within mainly untrawled areas, benthic bycatch records are associated to areas where fishing has
occurred. These differences between the datasets used to model density of VME indicator taxa,
compared to bycatch datasets used to estimate seafloor biomass mean that correlations need to be
carefully interpreted (at best) or may even be considered spurious.

3.7 VME indices

VME indices were mapped using as a basis the approach detailed by Gros et al. (2023) and adapted
for SPRFMO VME indicator taxa and for modelled data by Stephenson et al. (in prep). The approach
involves three steps: 1) assessing the vulnerability of VME indicator taxa to bottom-impact fishing (see
Gros et al., 2023 for details); 2) mapping richness-based (using habitat suitability models developed
by Stephenson et al., 2021a and SC10-DWO05) and density-based VME indices (using the density
models developed herein), 3) overlapping richness- and density-based VME indices to identify areas
where VMEs are most likely to occur (Stephenson et al. in prep).

Vulnerability scores were calculated for morphotaxa by Gross et al. (2023) and Stephenson et al. (in
prep) based on the following criteria: rare or unique; larval dispersal; sessility; habitat forming;
fragility; life history (Morato et al., 2018; Burgos et al., 2020; Gros et al., 2023). As some VME indicator
taxa modelled here (Alcyonacea, Bryozoa, Crinoidea, Demospongiae, GergenaceaGorgonian
AleyeneeaAlcyonacea, and Pennatulacea) contained several morphotaxa considered separately by
Gros et al. (2023) and Stephenson et al. (in prep), mean vulnerability scores of morphotaxa within
VME indicator taxa groups were used.

For richness- and density-based VME indices, each modelled layer of habitat suitability or density was
multiplied by corresponding vulnerability scores for respective VME indicator taxa (as per Gros et al.,
2023). This process was also applied to associated uncertainty layers for presence-only and density
models (standard deviation, SD). Vulnerability score-applied layers were then stacked (summed) into

four sets of combined layers (density; density-uncertainty; richness; richness-uncertainty). As in
Stephenson et al. (in prep), the uncertainty estimates generated here differ to those generated in Gros
et al. (2023). Spatially explicit uncertainty estimates were calculated in a method similar to the
coefficient of variation. Uncertainty estimates for the richness-based and density-based VME indices
were calculated by dividing the summed richness- and density-based VME indices by respective
summed vulnerability applied uncertainties (SD) for richness and density.

Areas of high richness- and density-based VME indices (90" and 95" percentiles) were then mapped.
Areas of very high VME indices (95" percentile) were overlayed (richness and density VME indices).
This procedure produces a final map detailing four classes where areas of overlapping high richness-
and density-based VME indices are mapped (map colours used are the same as Gros et al., 2023 for
easy comparison). Natural breaks were used to map areas of low confidence for richness- and density-
based indices. Three breaks were applied, and the upper break was used to show areas where
comparatively low confidence is present for richness and density indices independently (adapted from
Stephenson et al., in prep).
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4. Results

4.1 Density models

Performance at multiple spatial scales

Taxon-specific estimates of predicted density of individuals for 15 VME indicator taxa in the study area
produced good model fits (well above the subjectively defined Pearson’s r >0.4 thresheld) when using
training data for all VME indicator taxa except for the stony coral Solenosmilia variabilis (0.32 with
BRT) (
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Table 3Table—2). Conservative model fits, as assessed with iteratively (each bootstrap) withheld
evaluation data, showed significantly lower values for both BRTs and RFs across all modelled taxa, with
mean Pearson’s r values ranging from 0.09 to 0.62 (
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Table 3Table-3).
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Table 3 | Mean model fits based on 100 bootstraps for Boosted Regression Trees (BRTs) and Random Forest
(RF) density models for the entire study area for the 15 VME indicator taxa used in the data-driven approach.

Mean correlation (100 bootstraps) (Pearson’s r)

Training data Evaluation data

VME indicator taxon RF BRT RF BRT
Actiniaria 0.90 0.85 0.54 0.50
Alcyonacea 0.88 0.79 0.25 0.21
Antipatharia 0.83 0.69 0.29 0.30
Brisingida 0.93 0.87 0.38 0.33
Bryozoa 0.85 0.86 0.25 0.15
Crinoidea 0.77 0.82 0.30 0.33
Demospongiae 0.87 0.89 0.32 0.24
Enallopsammia rostrata - - - -

Goniocorella dumosa 0.95 0.89 0.62 0.57
GergenaeceaGorgonian Alcyonacea 0.87 0.92 0.25 0.16
Hexactinellida 0.82 0.79 0.31 0.29
Hydrozoa 0.86 0.87 0.27 0.25
Madrepora oculata - - - -

Pennatulacea 0.88 0.90 0.39 0.32
Solenosmilia variabilis 0.73 0.32 0.21 0.23
Stylasteridae 0.88 0.94 0.54 0.57
Zoantharia 0.87 0.70 0.11 0.09

Model fits were calculated again, where post-model fitting was based on the final ensembled density
model and using all training data available (832 records). When constrained to the boundaries of the
SPRFMO Evaluated Area, correlation (Pearson’s r) of density models and estimates of abundance for
15 VME indicator taxa ranged from 0.26 to 0.952, with values well above 0.4 (except Bryozoa with
0.26) and with no results for the stony coral Goniocorella dumosa, given no DTIS transect sites
detected this particulartaxentaxon outside the boundaries of the EEZs. Correlation values with the
modelled taxa constrained to the boundaries of the EEZs were consistently high (> 0.7) for all taxa,
with values very similar to those obtained from evaluating the models at the full study area, except
for the stony coral Solenosmilia variabilis, where Pearson’s r decreased from 0.837 to 0.354 (
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Table 4Fable4).
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Table 4 | Correlation (Pearson’s r) for the density models of 15 VME indicator taxa and their estimates of
abundance (observations using DTIS data) within the boundaries of the Exclusive Economic Zones (EEZs), the
SPRFMO Evaluated Area and the entire study area (a combination of the previous two). Model fits based on
the final ensembled density model (BRT and RF) and the full set of training data available.

Correlation (Pearson’s r)

VME indicator taxon EEZs Evaluated Area Study area
No. of DTIS data peintssites 692 138 832
Actiniaria 0.809 0.810 0.812
Alcyonacea 0.910 0.909 0.910
Antipatharia 0.753 0.780 0.750
Brisingida 0.961 0.923 0.958
Bryozoa 0.991 0.264 0.991
Crinoidea 0.857 0.946 0.853
Demospongiae 0.918 0.952 0.918
Goniocorella dumosa 0.897 0.897
m_g_Gor oman 0.936 0.942 0.935
Hexactinellida 0.734 0.760 0.736
Hydrozoa 0.867 0.661 0.867
Pennatulacea 0.959 0.789 0.959
Solenosmilia variabilis 0.837 0.602 0.354
Stylasteridae 0.972 0.710 0.972
Zoantharia 0.990 0.945 0.986

Model fits for the final ensembled density models calculated using the bioregions defined in Costello
et al. (2017) (Figure A1-3Figure-Al1-2) yielded Pearson’s r values for the “Mid-South Tropical Pacific”,
“New Zealand” and “Southern Ocean” bioregions. It should be noted that in the Southern Ocean
bioregion, there were only six DTIS observations available for model fit calculation. Values were well
above the 0.4 subjective indication of good fit thresheld—except for Crinoidea and Solenosmilia

variabilis in the Southern Ocean bioregion (-0.542 and 0.216 respectively) and some combinations of
taxa-region correlation values were not calculated (Goniocorella dumosa in the Mid-South Tropical
and Southern Ocean, Zoantharia and Actiniaria in the Southern Ocean) (Table Al1Fable-A2-1).

Model fits for the final ensemble density models calculated using the FMAs within the Evaluated Area
(1

Figure Al-2Figure-1) yielded results for three out of the 9 FMAs (North Louisville, Central Louisville,
and Northwest Challenger). Values were well above the-0.4 thresheld—except for Bryozoa and
Crinoidea in the Northwest Challenger FMA (0.036 and -0.153 respectively). The stony coral
Goniocorella dumosa could not be evaluated in any of the FMAs due to the lack of observational data
within those areas (Table A2-12Table-A2-2).
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Spatial patterns of predicted density

Predicted density of modelled taxa represented as number of individuals per km? were generally
concentrated in areas with lower uncertainty (where the coefficient of variation, using the same unit
as modelled density, had relatively low values). For example, estimated densities of Antipatharia in
some parts of the Challenger Plateau, where Pearson’s correlation r value for the final ensembled
model (BRT and RF) and the DTIS data in the Northwest Challenger FMA was 0.525 (Table A2-12Fable
A2-2), reached ~20,000 individuals/km?, while modelled uncertainty levels remain relatively low
(estimated teCV range from 0 to 400-individuals/km?) for that particular area (Figure Figure-3, Figure
Figure-4). Despite the relatively high correlation between the final hurdled model (0.750,



Table 4Table4) it is important to note that predicted densities were significantly lower than observed
densities (Figure Figure-5). This finding is likely attributed to the relatively few observed densities with
extremely high numbers of individuals (<7 DTIS sitespeints with observations of >50,000 Antipatharia
per km?). During the bootstrapping procedure used to create the data-driven models, comparatively
high-density observations would have been intermittently randomly selected for model training. Thus,
the predicted densities are generally lower than the observed densities, despite relatively high
correlations between predicted and observed densities for most modelled taxa.

Figure 3 | Predicted density (individuals per km?) of Antipatharia in the study area from the hurdle model
approach (DTIS data-driven approach). Inset maps of the high seas in the study area: (a) West Lord Howe Rise;
(b) East Lord Howe Rise; (c) West Norfolk Ridge; (d) North Louisville Seamount Chain; (e) West Challenger
Plateau; (f) Central Louisville Seamount Chain; (g) South Tasman Rise; and (h) South Louisville Seamount Chain
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Figure 4 | Coefficient of variation (CV)-{individuals-perkm?) of Antipatharia in the study area from the hurdle
model approach (DTIS data-driven approach). Inset maps of the high seas in the study area: (a) West Lord
Howe Rise; (b) East Lord Howe Rise; (c) West Norfolk Ridge; (d) North Louisville Seamount Chain; (e) West
Challenger Plateau; (f) Central Louisville Seamount Chain; (g) South Tasman Rise; and (h) South Louisville
Seamount Chain.
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Figure 5 | Predicted estimates of density (data-driven approach) compared to observed estimates of density
(DTIS data) for Antipatharia.

Figures for the rest of modelled VME indicator taxa can be found in Annex 2 — Investigation of data-
driven modelsAnnrex-3-.

Comparing density predictions
Existing habitat suitability medellayers (HSI-linear, HSI ROC-linear) (Stephenson et al., 2021) for VME
indicator taxa (Antipatharia, BesmespengiazeDemospongiae, Goniocorella dumosa, Gorgonian

Alcyonacea, Hexactinellida, Pennatulacea, Stylasteridae and Solensosmilia variabilis), including layers
used to estimate (or proxy for) abundance using-HSHinear—(HSI ROC-AUC threshelded-and-Power-
mean) versions-efthe-medelwere compared to predicted estimates of density. No clear patterns were
produced for Antipatharia (Figure Figure-6), nor for other VME indicator taxa except for Solenosmilia
variabilis, when using a randomly selected 10% of the total modelled area (Annex 2 — Investigation of
data-driven modelsAnnex2).

Figure 6 | Predicted estimates of density (data-driven approach) of Antipatharia compared to predictions of
suitable habitat fromfrom-different-methodspreviouslyusedto-estimate{orpro : (a) linear
habitat suitability medellayer (HSI-linear); (b) thresholded habitat suitability layermedel based on the ROC AUC
(HSI ROC-linear); (c) power transformed habitat suitability sedelayer (HSI Power-mean), the latter previously
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used to estimate (or proxy for) abundance. Samples represent a randomly selected subset of 10% of the
modelled area due to the high number of points.

Environmental coverage

Combined (i.e., for all modelled taxa) environmental coverage values generated were highest in the
shallow to moderate depths of the study area (300-1200 m depth), both inside (e.g., on the Chatham
Rise, the Kermadec Ridge, edges of the Campbell Plateau) and outside (e.g., on the South Tasman Rise,
the Lord Howe Rise, the features of the Louisville Seamount Chain) New Zealand’s EEZ (Figure Figure
7).

Individual environmental coverage values were also separately generated for each modelled VME
indicator taxaon (Annex 4 - Environmental coverage for data-driven modelsAnnex4), which resulted

in dissimilarities across a range of areas. Particularly for Solenosmilia variabilis, for which the highest
environmental coverage values (~0.9 - ~1) appeared to be restricted to relatively small well-defined
topographic features (e.g., on features from the Louisville Seamount Chain, the Macquarie Ridge and
the Hjort Trench) (Figure A4-13Figure-A4-13). This prediction reflects the seafloor topography-related
environmental variables used in the Solenosmilia variabilis density model (BPI-broad, seamounts and
standard deviation of slope).

The proportion of combined environmental coverage values distributed within FMAs was assessed
using breaks of 0.1. Low to medium environmental coverage values (from ~0 to ~0.5) generally
accounted for most of the environmental coverage estimates within each FMA, with the Louisville
Seamount Chain FMAs (North, Central and South) yielding the largest proportions within areas of high
environmental coverage (~1) (Table 5Fable-6).

Table 56 | Proportion of combined environmental coverage for all modelled VME indicator taxa within
Fisheries Management Areas (FMAs)

CO\E::Ia.ge S. Lor(‘i N. Lort'i NW. Westpac West N(:')I't!'\ Cel.'!tr'al So.ut!\ Tzzumt:n
interval Howe Rise Howe Rise Challenger Norfolk = Louisville Louisville Louisville Rise

0-0.1 0.29 0.33 0.20 0.39 0.43 0.34 0.40 0.52 0.59
0.1-0.2 0.30 0.46 0.14 0.14 0.21 0.12 0.08 0.07 0.11
0.2-0.3 0.23 0.13 0.28 0.17 0.11 0.06 0.06 0.04 0.07
03-0.4 0.12 0.05 0.22 0.12 0.09 0.04 0.04 0.03 0.08
0.4-0.5 0.05 0.02 0.10 0.08 0.06 0.03 0.04 0.03 0.07
0.5-0.6 0.01 0.01 0.04 0.05 0.04 0.02 0.03 0.03 0.04
0.6-0.7 0.00 0.00 0.02 0.04 0.03 0.03 0.05 0.06 0.03
0.7-0.8 0.00 0.00 0.01 0.01 0.02 0.03 0.06 0.06 0.01
0.8-0.9 0.00 0.00 0.01 0.00 0.01 0.07 0.08 0.09 0.00
09-1.0 0.00 0.00 0.00 0.00 0.00 0.27 0.16 0.06 0.00
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Figure 7 | Combined environmental coverage (0-1) between 200 and 3000 m depth within the study area. Low
values of environmental coverage (dark blue) indicate parts of the environmental space that contained few, or
no training data - meaning greater caution should be placed in the predictions of VME indicator taxa density
estimates.

4.2 Relative environmental suitability (RES) models

For all four stony coral taxa (Goniocorella dumosa, Enallopsammia rostrata, Madrepora oculata,
Solenosmilia variabilis), the environmental variables used in the principles-based modelling approach
were similar, with aragonite saturation at depth, bathymetric position index, particulate organic
carbon export and temperature being selected more than 15 times across the different VME indicator
taxa, which led to the selection of these variables to inform the RES methodology, with agreement
from all experts (Figure Figure-8, Table A5-113Table-A5-1).
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Figure 8 | Environmental variables chosen by experts following the approach originally described in SC10-
DWO5 for four stony coral taxa: Goniocorella dumosa (GDU), Enallopsammia rostrata (ERO), Madrepora
oculata (MOC) and Solenosmilia variabilis (SVA).

Following discussion with the panel of 8 experts that provided feedback (out of the 22 initially
contacted), most experts agreed on the use of the plateau shape for aragonite saturation at depth,
bathymetric position index and particulate organic carbon export, while trapezoid shape was chosen
by all experts for temperature. Detailed results are provided in Annex 5 — Relative environmental
suitability (RES) models - Experts resultsAnrex-5.

The performance of the models was assessed using DTIS imagery data (used for the data-driven
approach). Model performance, as assessed with this completely independent evaluation data,
ranged from a Pearson’s correlation 0.06 to 0.35 (
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Table 6Fable—7, Annex 6 - Relative environmental suitability (RES) modelsAnnex-6). The principles-
based approach density models under-performed compared to the habitat suitability index models

produced by Stephenson et al. (2021). For example, for Goniocorella dumosa, Pearson’s correlation
for the principles-based approach density model was 0.30, whereas evaluation of the habitat
suitability model (HSI-linear and HSI ROC-linear-AUbc-threshelded) compared to the abundance data
was 0.34-0.35, respectively (
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Table 6Fable7). Relationships between observed Goniocorella dumosa density (DTIS data) compared
to predictions from the principles-based approach density model and the habitat suitability models
(HSl-linear, HSI ROC-linear), —used—to—estimate—{or—proxy—for—density{HS-linear—and—ROC-AUC
threshelded)}-were similar, with the highest observed density values (from the DTIS data) being
predicted as lower densities by the principles-based approach density model (Figure 10).

Despite showing low correlation values, the broad spatial predictions of Goniocorella dumosa density
partly matched spatial patterns of density determined using the data-driven approach (Figure Figure
9 compared with Figure A2-16Figure-A2-16) with higher relative density predicted on the Challenger
Plateau and the Chatham Rise (this species being found predominantly inside New Zealand’s EEZ).
Results from the rest of modelled stony coral taxa can be found in Annex 6 - Relative environmental
suitability (RES) modelsAnrex6.
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Table 67 | Correlation (Pearson’s r) between model predictions (RES, Habitat suitability models; Stephenson et
al., 2021 [HSI-linear and HSI ROC-linear]) for four stony coral taxa (Goniocorella dumosa, Enallopsammia

rostrata, Madrepora oculata, Solenosmilia variabilis), and DTIS observations.

Correlation (Pearson’s r)

Taxa RES
Enallopsammia rostrata 0.20
Goniocorella dumosa 0.30
Madrepora oculata 0.10
Solenosmilia variabilis 0.06

HSI-linear

0.29

0.35

0.30

0.22

HSI ROC-linear

0.35

0.34

0.31

0.23

Figure 9 | Predicted relative density (0-1) in the study area from the hurdled principles-based approach (expert
informed) for Goniocorella dumosa. Inset maps of the high seas in the study area: (a) West Lord Howe Rise; (b)
East Lord Howe Rise; (c) West Norfolk Ridge; (d) North Louisville Seamount Chain; (e) West Challenger Plateau;
(f) Central Louisville Seamount Chain; (g) South Tasman Rise; and (h) South Louisville Seamount Chain.
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Figure 10 | Relationships between Goniocorella dumosa abundance (DTIS data) compared to predictions used
to estimate density from: (a) principles-based approach (RES); and to predictions of suitable habitat from: (b)
habitat suitability layer (HSI-linear), and (c) ROC AUC thresholded habitat suitability layer (HSI ROC-linear)frem

4.3 VAST models

Analysis of models

Used as a measure of each model’s parsimony, Aikake information criterion (AIC) was lowest for the
models using spatial and environmental effects (Table 7Fable-8). Models generating pseudo-absences
with target-group background yielded similar AIC values when using spatial effects and either PCA or
standard (untransformed) environmental covariates.

Table 78 | Aikake information criterion (AIC) and percent deviance explained for all VAST models predicting
relative density of Demospongiae in the study area.

Aikake information criterion (AIC) Percent deviance explained

Target-group Random (10x) Target-group Random (10x)
VAST model

background background
Environmental (PCA) 14645.48 13978.01 89.0 88.8
Environmental (standard) = 14624.55 13833.43 89.4 88.7
Spatial 14390.00 13911.86 94.7 95.0
Spatial and

. 14293.02 13463.97 94.7 95.2

environmental (PCA)
Spatial and
environmental 14295.65 13259.85 94.8 95.2
(standard)

Percent deviance explained values were higher for models using spatial and environmental effects
(Table 7Fable-8). Spatial effects alone explain a greater proportion of the models’ deviance then the
environmental covariates, but when combined, explain the greatest amount of deviance (Table 7Fable
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8). Considering the AIC and deviance values and the larger uncertainty for models using PCA
environmental covariates, the two models (with pseudo-absences being randomly generated and
TGB-generated) using spatial and environmental effects (standard) were used for the ensemble model
mapping. Where, the ensemble predictions were made using the same approach as Stephenson et al.
(2021). However, weights for the ensemble model were constructed using median Pearson’s
correlations (Table 8Fable-9) rather than AUC.

Performance of models

Correlations of the predicted density of Demospongiae and the observed abundance (DTIS data) for
both models were found to be moderate. Model bias varied significantly across cross-validation folds,
suggesting a slight over-prediction for both models (Table 8%able-3). Model spread was centred
around 1, indicating a positive one-to-one trend between the observed and the predicted data. Root-
mean-square error (RSME) and average error (AVE) metrics (Potts and Elith, 2006) were also alike
(Table 8Table-9), leading to the overall conclusion that both models performed similarly and that
target-group background generation of pseudo-absences (instead of random generation) does not
improve performance.

Table 89 | K-fold cross-validation results of spatial and environmental models (lowest equal AIC and highest
percent deviance explained). Mean, median and range given for Pearson’s correlation coefficient, Spearman’s
rank correlation, model bias (closer to O, the better), model spread (closer to 1, the better), root-mean-square
error (RMSE) and average error (AVE) metrics.

Model Pearson’s Spearman’s Model bias Model spread RMSE AVE

Mean Median  Mean Median Mean Median Mean Median Mean  Median Mean Median

0.60 0.55 1.84 1.42 63.14 -8.98
TGB 0.60 (0.20- 0.52 (0.31- 3.10 (-4.28- 1.45 (0.26- 71.17 (46.67- -9.00 (-17.05-

0.93) 0.62) 10.05) 3.15) 119.16) 1.98)

Random 0.66 0.56 3.50 1.28 63.09 -7.45
(10%) 0.61 (0.23- 0.54 (0.35- 4.41 (-1.78- 1.27 (0.3- 70.30 = (49.76- -7.39  (-16.83-

0.93) 0.61) 10.76) 2.65) 118.27) 1.48)

Spatial patterns of predicted density

VAST ensemble predictions of relative density of Demospongiae in the study area showed ‘hotspots’
on the Chatham Rise, the Campbell Plateau, the Challenger Plateau and the Kermadec Ridge (Figure
Figure11). The VAST ensemble coefficient of variation showed low uncertainty in areas overlapping
or near the location of the DTIS sites, increasing as the distance to these sites also increases (Figure
Figure-12). Spatial patterns of relative density appeared to be similar to those showed by the hurdle
model predicting density of Demospongiae using the data-driven approach (Figure A3-11Figure-A3-11)
although more ‘hotspots’ were present in the latter.
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Figure 11 | VAST ensemble predicting relative density of Demospongiae. Inset maps of the high seas in the
study area: (a) West Lord Howe Rise; (b) East Lord Howe Rise; (c) West Norfolk Ridge; (d) North Louisville
Seamount Chain; (e) West Challenger Plateau; (f) Central Louisville Seamount Chain; (g) South Tasman Rise;
and (h) South Louisville Seamount Chain.
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Figure 12| Coefficient of variation (CV) from the VAST ensemble predicting relative density of Demospongiae.
Inset maps of the high seas in the study area: (a) West Lord Howe Rise; (b) East Lord Howe Rise; (c) West
Norfolk Ridge; (d) North Louisville Seamount Chain; (e) West Challenger Plateau; (f) Central Louisville
Seamount Chain; (g) South Tasman Rise; and (h) South Louisville Seamount Chain.

4.4 Investigating the relationships between benthic bycatch biomass and predicted
density of VME indicator taxa

Correlations (Pearson’s) between benthic bycatch biomass data from the SPRFMO Evaluated Area

(data compiled for SC8-DW11) were calculated for 15 VME indicator taxa using density (hurdle)

models (presented in this paper) and, estimates{orproxiesfor)abundance-based-on-habitat suitability
models (HSI-linear and HSI ROC-linear) from Stephenson et al (2021) and SC10-DWO05 (Table 9Fable
10Error! Reference source not found.).
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Table 910 | Pearson's correlation measuring the linear relationship between benthic bycatch biomass of VME
indicator taxon (using data compiled for SC8-DW11) and spatial predictions, using density models, HSI-linear
and HSI ROC-linear habitat suitability models from Stephenson et al (2021) and SC10-DWO05.

VME indicator taxon Density models HSlI-linear HSI ROC-linear
Actiniaria 0.01 0.29 0.289
Alcyonacea 0.023 0.058 0.063
Antipatharia 0.079 0.262 0.286
Brisingida 0.028 0.099 0.111
Bryozoa -0.004 0.066 0.066
Crinoidea 0.002 0.026 0.029
Demospongiae 0.003 0.022 0.021
Goniocorella dumosa 0.03 0.034 0.035
GergenaceaGorgonian Alcyonacea 0.014 0.046 0.047
Hexactinellida 0.234 0.159 0.165
Hydrozoa -0.014 0.047 0.041
Pennatulacea 0.17 0.087 0.086
Solenosmilia variabilis 0.178 0.165 0.185
Stylasteridae 0.386 0.134 0.141
Zoantharia 0.012 0.082 0.091

Pearson’s correlation was consistently non-existent (near 0) across all VME indicator taxa density
models except for Hexactinellida, Stylasteridae and Solenosmilia variabilis, which were marginally
higher, ranging from 0.178 to 0.386 (Table 9Fable-10Table 9). Correlation was also consistently low (<
~0.29) across all VME indicator taxa when calculated against the HSI-linear and HSI ROC-linear models.

4.5 VME indices

Vulnerability scores for modelled VME indicator taxa were extracted and adapted from Gros et al.,
2023 and Stephenson et al., in prep. (Table 10Fable11
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Table 10).
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Table 1041 | Vulnerability scores for all modelled VME indicator taxa (either using the data-driven or the
principles-based approach) were extracted and adapted from Gros et al., 2023 and Stephenson et al., in prep.

VME indicator taxon Vulnerability score
Actiniaria 1.958
Alcyonacea 2.160
Antipatharia 2.273
Brisingida 2.098
Bryozoa 2.177
Crinoidea 2.405
Demospongiae 2.704
Goniocorella dumosa 2.776
GergenaceaGorgonian Alcyonacea 2.624
Hexactinaellida 2.776
Hydrozoa 2.550
Pennatulacea 2.389
Solenosmilia variabilis 2.776
Stylasteridae 2.614
Zoantharia 2.550

For all VME indicator taxa modelled using the data-driven approach, taxon-specific vulnerability
scores, multiplied by both the taxon-specific estimated density and presence-only (Stephenson et al.,
2021a) models were summed to create estimates of combined richness- and abundance-VME indices.
The output was then mapped with the respective uncertainty layers. For exploratory purposes, a
combined visualisation was produced for the top 5% of richness- and abundance-based VME indices
and classified according to the four categories proposed in Gros et al.,, 2023 (defined as “Low
abundance-high Richness”, “High Abundance-High richness”, “Low abundance-Low richness”, “High
abundance-Low richness”) with two extra categories to highlight areas of low confidence (one for

abundance, one for richness) (Figure Figure-13).
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Figure 13 | Exploratory visualisation of a vulnerability weighted VME indices. The top 5% of areas for modelled
VME indicator taxa richness and abundance in the study area categorised by: Low abundance-High Richness
(green), High abundance-High richness (salmon), Low abundance-Low richness (beige), High abundance-Low
richness (blue), Abundance Low confidence (grey) and Richness Low confidence (light brown). Inset maps of
the high seas in the study area: (a) West Lord Howe Rise; (b) East Lord Howe Rise; (c) West Norfolk Ridge; (d)
North Louisville Seamount Chain; (e) West Challenger Plateau; (f) Central Louisville Seamount Chain; (g) South
Tasman Rise; and (h) South Louisville Seamount Chain.

5. Discussion

5.1 Data-driven density models

Predicted density models and their associated uncertainty estimates (coefficient of variation) were
developed for 15 VME indicator taxa (Table 1Fable1). The models were developed using a data-driven
approach previously described and trialled in SC10-DWO05 and accepted by the SC.

We found that the ensemble density models performed well (Pearson’s r > 0.75) at the spatial scale
of the study area (the SPRFMO evaluated area and EEZ's within its boundaries) when using training
data for the evaluation (which may lead to over-inflation of the performance metric), except for the
stony coral Solenosmilia variabilis (Pearson’s r = 0.35). We also found that the models generally
performed well when constrained to the SPRFMO Evaluated Area (excluding the EEZ’s) using training
data (Peason’s r > 0.65), except for Bryozoa (Pearson’s r = 0.29) and Gioniocorella dumosa (the latter
couldn’t be evaluated due to the lack of training data within the Evaluated Area). Investigation of the
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models at the scale of each Fishery Management Area (FMA) was only partially possible for three out
of the eight FMAs, highlighting the need to acquire abundance data from these areas (and the wider
Evaluated Area) for model building, training, and validation. The need for location-specific data was
reinforced by the results from the investigation of the environmental coverage within FMAs, which
showed little overlap of the FMAs with regions of high environmental coverage.

The final ensembled density models were evaluated using training data only, and that their predictive
accuracy should be ideally assessed using completely independent data. There are other image data
that may be available from other locations within the SPRFMO Evaluated Area and Australia’s EEZ that
could potentially allow for this independent validation test. However, these data were collected using
different instruments than the DTIS imagery and a considerable amount of data grooming may be
required to make them comparable to the DTIS abundance data. Existing image data collected within
Australia’s EEZ (Williams et al., 2020ab; Koslow et al., 2001; Althaus et al., 2009) has been recently
provided to NIWA, who are currently assessing if these data are suitable and of sufficient quantity to
independently evaluate the density models presented here.

As more abundance data suitable for model development and validation becomes available (from
either past or future surveys), the density models that currently represent coarse taxonomic groups
(e.g., Actiniaria, Demospongiae, Zoantharia) may be able to be broken down into finer taxonomic
groups (e.g., as has been done for the stony corals Goniocorella dumosa and Solenosmilia variabilis
from the order Scleractinia). This taxonomic refinement of the models will potentially allow ecological
patterns at the species level, which may be obscured at coarser taxonomic resolutions, to emerge.

5.2 Principles-based (RES) density models
Principles-based (RES) density models were developed for 4 VME indicator taxa (Table 1Fable1), using
an approach previously described and trialled in SC10-DWO05 and accepted by the SC.

We found that the RES density models performed poorly at the full scale of the study area when using
DTIS abundance data for the investigation of their performance and that, statistically, existing habitat
suitability models performed better at predicting abundance.

While the data-driven approach provides an objective methodology for estimating the spatial
distribution of density (abundance) and should remain prioritised for the development of robust
density models, the principles-based approach remains an alternative that may continue to be
explored, particularly if:

e The number of responses from experts increase (8 of the approached 22 experts
participated in our approach).

e Relevant, new and/or improved environmental data becomes available.

e The methods used to gather independent expert knowledge evolve (e.g., new shapes to
describe relationships between taxa and environmental variables are used).

5.3 VAST density models

A single predicted density model, and its associated uncertainty estimate, was developed for the class
Demospongiae using the VAST modelling framework. This analysis is the first instance of this
methodology being used to model predicted estimates of VME indicator taxa density in the SPRFMO
Evaluated Area.
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The model performed moderately well when cross-validated to the DTIS data and presented broadly
similar predicted patterns of the spatial distribution of density to the final data-driven density models.

5.4 Investigating the relationship between benthic bycatch and predictions of

density
Correlations between modelled distributions of VME indicator taxa (habitat suitability models and
density models) and benthic bycatch biomass data (compiled as part of SC8-DW11) were explored.
No significant correlation was identified for any of the modelled taxa, with correlation results
marginally increasing when assessing the relationship with habitat suitability models. The latter
likely relates to the habitat suitability models being partly built using benthic bycatch presence-
absence data. Before further investigations of density models and bycatch biomass data are
undertaken (if any), a better understanding of the data limitations and how they affect inference
from correlations between benthic bycatch and predictions of density is required. Ideally, to make
valid comparisons between benthic bycatch biomass data and predictive models, it would be
necessary to first build biomass models (not abundance models) and to be able to adjust the raw
biomass data using robust trawl catchability estimates for VME indicator taxa.

5.5 VME indices

We used the development of the density models for the study area, and the recent adaptation of a
VME-index method (Stephenson et al. In prep.), to also trial a method to quantify the vulnerability of
VME indicator taxa to physical disturbance. The results characterise different levels of vulnerability to
bottom trawl fishing, reflecting different levels of abundance and richness of VME indicator taxa. The
resulting indices appear to be a promising approach to describing spatial vulnerability across VME
indicator taxa, with the method reproducible and easily applied to other datasets and use other
vulnerability criteria.

Further improvements to the application of the method could include the normalisation of abundance
across taxa, which was not done in our application of the method and may have resulted in locations
containing VME indicator taxa that naturally occur in high abundances being prioritised over locations
containing VME indicator taxa that naturally occur at relatively lower abundances.

The identification of vulnerability hotspots could represent focal areas for preventing significant
adverse impacts on VMEs. However, in our application of the approach we have used an arbitrary
threshold of the top 5% to characterise hotspots of vulnerability, and further work is required to
identify meaningful or evidence-based thresholds before this approach is applied to inform
management decisions. Once that has been done, potential applications of VME indices include their
use for risk assessment in areas where image data are available. Previously developed VME indices
have been used as part of a multi-criteria approach to help inform the design of protective measures
for VMEs in the North-East Atlantic (Morato et al. 2018). However, while a VME index has been used
since 2018 for ICES advice, it has been recognised that there are several improvements that could be
made to support future use (ICES 202081).

6. Recommendations

It is recommended that the Scientific Committee:
e Notes:
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O Spatial predictions of density for 15 VME indicator taxa, based on a data-driven
approach using observed abundance data (DTIS) that has previously been endorsed
by the SC, have been completed, showing promising results.

0 Spatial predictions of density for 4 VME indicator taxa, based on a principles-based
approach using on expert knowledge (RES) that has previously been endorsed by the
SC, have been completed, but further work is required to fully assess the
appropriateness of this approach.

0 Spatial prediction of relative density for 1 VME indicator taxon based on the VAST
modelling framework has been completed, with promising results.

0 A methodto develop VME indices that quantify the vulnerability of VME indicator taxa
to physical disturbance using taxon-specific abundance and presence data has been
trialled, with promising results.

0 The future availability of further imagery data would help facilitate spatial predictions
of density for a greater number of VME indicator taxa with increased robustness.

e Recommends:

0 Where feasible, that additional data is collected from areas of interest to
management (e.g., FMAs) to better inform model development and validation.
0 That additional independent data, ideally providing a better coverage of the
Evaluated Area, is compiled to perform a full evaluation of the density models.
0 That once density models have been fully evaluated, and if considered to be adequate
to inform management decisions, they are:
= |ncorporated into the ongoing review of the effectiveness of the spatial
management arrangements.
= Fed into the VME index to quantify the vulnerability of VME indicator taxa to
physical disturbance.
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Annex 1 - Deep Towed Imaging System (DTIS) Data

1

Figure A1-21 | Location of all DTIS sites (black peintsdots) in relation to all the Fishery Management Areas
(FMAs) present in the Evaluated Area (in light blue).

Figure A1-32 | Location of all DTIS sites in relation to the bioregions defined in Costello et al. (2017).
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Figure A1-43 | DTIS sites that provided estimates of abundance for Enallopsammia rostrata (CSS). DTIS sites
where Enallopsammia rostrata as absent are shown as grey dots. Black lines indicate the boundaries between
the SPRFMO Evaluated Area and the multiple Exclusive Economic Zones.

Figure A1-54 | DTIS sites that provided estimates of VME indicator taxa abundance data for Enallopsammia
rostrata (CSS). Size represents density (log). Black lines indicate the boundaries between the SPRFMO
Evaluated Area and the multiple Exclusive Economic Zones.
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Figure A1-65 | DTIS sites that provided estimates of abundance for Goniocorella dumosa (CSS). DTIS sites
where Goniocorella dumosa was absent are shown as grey dots. Black lines indicate the boundaries between
the SPRFMO Evaluated Area and the multiple Exclusive Economic Zones.

Figure A1-76 | DTIS sites that provided estimates of VME indicator taxa abundance data for Goniocorella
dumosa (CSS). Size represents density (log). Black lines indicate the boundaries between the SPRFMO
Evaluated Area and the multiple Exclusive Economic Zones.
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Figure A1-87 | DTIS sites that provided estimates of abundance for Madrepora Oculata (CSS). DTIS sites where
Madrepora oculata was absent are shown as grey dots. Black lines indicate the boundaries between the
SPRFMO Evaluated Area and the multiple Exclusive Economic Zones.

Figure A1-98 | DTIS sites that provided estimates of VME indicator taxa abundance data for Madrepora
oculata (CSS). Size represents density (log). Black lines indicate the boundaries between the SPRFMO
Evaluated Area and the multiple Exclusive Economic Zones.
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Figure A1-109 | DTIS sites that provided estimates of abundance for Solenosmilia variabilis. DTIS sites where
Solenosmilia variabilis (CSS) was absent are shown as grey dots. Black lines indicate the boundaries between
the SPRFMO Evaluated Area and the multiple Exclusive Economic Zones.

Figure A1-1110 | DTIS sites that provided estimates of VME indicator taxa abundance data for Solenosmilia
variabilis (CSS). Size represents density (log). Black lines indicate the boundaries between the SPRFMO
Evaluated Area and the multiple Exclusive Economic Zones.

51



Figure A1-1211 | DTIS sites that provided estimates of abundance for Actinaria (ATX). DTIS sites where
Actinaria were absent are shown as grey dots. Black lines indicate the boundaries between the SPRFMO
Evaluated Area and the multiple Exclusive Economic Zones.

Figure A1-1312 | DTIS sites that provided estimates of VME indicator taxa abundance data for Actinaria (ATX).
Size represents density (log). Black lines indicate the boundaries between the SPRFMO Evaluated Area and the
multiple Exclusive Economic Zones.
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Figure A1-1413 | DTIS sites that provided estimates of abundance for Alcyonacea (AJZ). DTIS sites where
Alcyonacea were absent are shown as grey dots. Black lines indicate the boundaries between the SPRFMO
Evaluated Area and the multiple Exclusive Economic Zones.

Figure A11514 | DTIS sites that provided estimates of VME indicator taxa abundance data for Alcyonacea
(AJZ). Size represents density (log). Black lines indicate the boundaries between the SPRFMO Evaluated Area
and the multiple Exclusive Economic Zones.
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Figure A1-1615 | DTIS sites that provided estimates of abundance for Antipatharia (AQZ). DTIS sites where
Antipatharia were absent are shown as grey dots. Black lines indicate the boundaries between the SPRFMO
Evaluated Area and the multiple Exclusive Economic Zones.

Figure A1-1716 | DTIS sites that provided estimates of VME indicator taxa abundance data for Antipatharia
(AQZ). Size represents density (log). Black lines indicate the boundaries between the SPRFMO Evaluated Area
and the multiple Exclusive Economic Zones.
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Figure A1-1817 | DTIS sites that provided estimates of abundance for Brisingida (BHZ). DTIS sites where
Brisingida were absent are shown as grey dots. Black lines indicate the boundaries between the SPRFMO
Evaluated Area and the multiple Exclusive Economic Zones.

Figure A1-1918 | DTIS sites that provided estimates of VME indicator taxa abundance data for Brisingida (BHZ).
Size represents density (log). Black lines indicate the boundaries between the SPRFMO Evaluated Area and the
multiple Exclusive Economic Zones.

55



Figure A1-2019 | DTIS sites that provided estimates of abundance for Bryozoa (BZN). DTIS sites where Bryozoa
were absent are shown as grey dots. Black lines indicate the boundaries between the SPRFMO Evaluated Area
and the multiple Exclusive Economic Zones.

Figure A1-2120 | DTIS sites that provided estimates of VME indicator taxa abundance data for Bryozoa (BZN).
Size represents density (log). Black lines indicate the boundaries between the SPRFMO Evaluated Area and the
multiple Exclusive Economic Zones.
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Figure A1-2221 | DTIS sites that provided estimates of abundance for Crinoidea (CWD). DTIS sites where
Crinoidea were absent are shown as grey dots. Black lines indicate the boundaries between the SPRFMO
Evaluated Area and the multiple Exclusive Economic Zones.

Figure A1-2322 | DTIS sites that provided estimates of VME indicator taxa abundance data for Crinoidea
(CWD). Size represents density (log). Black lines indicate the boundaries between the SPRFMO Evaluated Area
and the multiple Exclusive Economic Zones.
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Figure A1-2423 | DTIS sites that provided estimates of abundance for Demospongiae (PFR). DTIS sites where
Demospongiae were absent are shown as grey dots. Black lines indicate the boundaries between the SPRFMO
Evaluated Area and the multiple Exclusive Economic Zones.

Figure A1-2524 | DTIS sites that provided estimates of VME indicator taxa abundance data for Demospongiae
(PFR). Size represents density (log). Black lines indicate the boundaries between the SPRFMO Evaluated Area
and the multiple Exclusive Economic Zones.
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Figure A1-2625 | DTIS sites that provided estimates of abundance for Gorgonian Alcyonacea (GGW). DTIS sites
where Gorgonian Alcyonacea were absent are shown as grey dots. Black lines indicate the boundaries between
the SPRFMO Evaluated Area and the multiple Exclusive Economic Zones

Figure A1-2726 | DTIS sites that provided estimates of VME indicator taxa abundance data for Gorgonian
Alcyonacea (GGW). Size represents density (log). Black lines indicate the boundaries between the SPRFMO
Evaluated Area and the multiple Exclusive Economic Zones.
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Figure A1-2827 | DTIS sites that provided estimates of abundance for Hexactinellida (PFR). DTIS sites where
Hexactinellida were absent are shown as grey dots. Black lines indicate the boundaries between the SPRFMO
Evaluated Area and the multiple Exclusive Economic Zones

Figure A1-2928 | DTIS sites that provided estimates of VME indicator taxa abundance data for Hexactinellida
(PFR). Size represents density (log). Black lines indicate the boundaries between the SPRFMO Evaluated Area
and the multiple Exclusive Economic Zones.
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Figure A1-3029 | DTIS sites that provided estimates of abundance for Hydrozoa (HQZ). DTIS sites where
Hydrozoa were absent are shown as grey dots. Black lines indicate the boundaries between the SPRFMO
Evaluated Area and the multiple Exclusive Economic Zones

Figure A1-3130 | DTIS sites that provided estimates of VME indicator taxa abundance data for Hydrozoa (HQZ).
Size represents density (log). Black lines indicate the boundaries between the SPRFMO Evaluated Area and the
multiple Exclusive Economic Zones.
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Figure A1-3231 | DTIS sites that provided estimates of abundance for Pennatulacea (NTW). DTIS sites where
Pennatulacea were absent are shown as grey dots. Black lines indicate the boundaries between the SPRFMO
Evaluated Area and the multiple Exclusive Economic Zones

Figure A1-3332 | DTIS sites that provided estimates of VME indicator taxa abundance data for Pennatulacea
(NTW). Size represents density (log). Black lines indicate the boundaries between the SPRFMO Evaluated Area
and the multiple Exclusive Economic Zones.
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Figure A1-3433 | DTIS sites that provided estimates of abundance for Stylasteridae (AXT). DTIS sites where
Stylasteridae were absent are shown as grey dots. Black lines indicate the boundaries between the SPRFMO
Evaluated Area and the multiple Exclusive Economic Zones

Figure A1-3534 | DTIS sites that provided estimates of VME indicator taxa abundance data for Stylasteridae
(AXT). Size represents density (log). Black lines indicate the boundaries between the SPRFMO Evaluated Area
and the multiple Exclusive Economic Zones.
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Figure A1-3635 | DTIS sites that provided estimates of abundance for Zoantharia (ZOT). DTIS sites where
Zoantharia were absent are shown as grey dots. Black lines indicate the boundaries between the SPRFMO
Evaluated Area and the multiple Exclusive Economic Zones

Figure A1-3736 | DTIS sites that provided estimates of VME indicator taxa abundance data for Zoantharia
(ZOT). Size represents density (log). Black lines indicate the boundaries between the SPRFMO Evaluated Area
and the multiple Exclusive Economic Zones.
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Annex 2 — Investigation of data-driven models

Figure A2-1 | Predicted estimates of density (data-driven approach) compared to observed estimates of
density (DTIS data) for Actinaria.

Figure A2-2 | Predicted estimates of density (data-driven approach) compared to observed estimates of
density (DTIS data) for Alcyonacea.
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Figure A2-3 | Predicted estimates of density (data-driven approach) compared to observed estimates of
density (DTIS data) for Brisingida.

Figure A2-4 | Predicted estimates of density (data-driven approach) compared to observed estimates of
density (DTIS data) for Bryozoa.
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Figure A2-5 | Predicted estimates of density (data-driven approach) compared to observed estimates of
density (DTIS data) for Crinoidea.

Figure A2-6 | Predicted estimates of density (data-driven approach) compared to observed estimates of
density (DTIS data) for BesmespengiaeDemospongiae.
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Figure A2-7 | Predicted estimates of density (data-driven approach) compared to observed estimates of
density (DTIS data) for Goniocorella dumosa.

Figure A2-8 | Predicted estimates of density (data-driven approach) compared to observed estimates of
density (DTIS data) for Gorgonian Alcyonacea.
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Figure A2-9 | Predicted estimates of density (data-driven approach) compared to observed estimates of
density (DTIS data) for Hexactinellida.

Figure A2-10 | Predicted estimates of density (data-driven approach) compared to observed estimates of
density (DTIS data) for Hydrozoa.
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Figure A2-11 | Predicted estimates of density (data-driven approach) compared to observed estimates of
density (DTIS data) for Pennatulacea.

Figure A2-12 | Predicted estimates of density (data-driven approach) compared to observed estimates of
density (DTIS data) for Stylasteridae.
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Figure A2-13 | Predicted estimates of density (data-driven approach) compared to observed estimates of
density (DTIS data) for Solenosmilia variabilis.

Figure A2-14 | Predicted estimates of density (data-driven approach) compared to observed estimates of
density (DTIS data) for Zoantharia.

71



Figure A2-15 | Predicted estimates of density (data-driven approach) of Demospongiae compared to
predictions of suitable habitat from: (a) linear habitat suitability layer (HSI-linear); (b) thresholded habitat
suitability layer based on the ROC AUC (HSI ROC-linear); (c) power transformed habitat suitability layer (HSI
Power- mean) the latter previously used to estlmate (or proxv for) abundancedlﬁfereﬂt—metl-‘leds—preweuely

selected subset of 10% of the modelled area due to the high number of pomts

Figure A2-16 | Predicted estimates of density (data-driven approach) of Goniocorella dumesadumosa
compared to predictions of suitable habitat from: (a) linear habitat suitability layer (HSI-linear); (b) thresholded
habitat suitability layer based on the ROC AUC (HSI ROC-linear); (c) power transformed habitat suitability layer

(HSI Power—mean) the latter previously used to estimate (or proxv for) abundanced#erent—metheds

randomly selected subset of 10% of the modelled area due to the high number of pomts
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Figure A2-17 | Predicted estimates of density (data-driven approach) of Gorgonian Alcyonacea compared to
predictions of suitable habitat from: (a) linear habitat suitability layer (HSI-linear); (b) thresholded habitat
suitability layer based on the ROC AUC (HSI ROC-linear); (c) power transformed habitat suitability layer (HSI

Power- mean) the latter previously used to estlmate (or proxv for) abundanced#feﬁeﬂt—metheds—prevmely

selected subset of 10% of the modeIIed area due to the high number of pomts

Figure A2-18 | Predicted estimates of density (data-driven approach) of Hexactinellida compared to
predictions of suitable habitat from: (a) linear habitat suitability layer (HSI-linear); (b) thresholded habitat
suitability layer based on the ROC AUC (HSI ROC-linear); (c) power transformed habitat suitability layer (HSI
Power- mean) the latter previously used to est|mate (or proxv for) abundancedﬂe&ent—metheds—p#ekusw

selected subset of 10% of the modelled area due to the high number of pomts
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Figure A2-19 | Predicted estimates of density (data-driven approach) of Pennatulacea compared to predictions
of suitable habitat from: (a) linear habitat suitability layer (HSI-linear); (b) thresholded habitat suitability layer
based on the ROC AUC (HSI ROC-linear); (c) power transformed habitat suitability layer (HSI Power-mean), the

latter prewouslv used to estlmate (or proxv for) abundanceér#erent—methed&preweu%ed—teesﬂmate—(er

RQGAH&(&)—Pewe#traasfermed—ha@tat—swtabrhty—medel Samples represent a randomly selected subset of

10% of the modelled area due to the high number of points.

Figure A2-20 | Predicted estimates of density (data-driven approach) of Stylasteridae compared to predictions
of suitable habitat from: (a) linear habitat suitability layer (HSI-linear); (b) thresholded habitat suitability layer
based on the ROC AUC (HSI ROC-linear); (c) power transformed habitat suitability layer (HSI Power-mean), the

latter preV|ous|v used to estlmate (or proxv for) abundanceé#erent—methedspreweasiy—used—t&estrmate—(er

R@GAU&(-&)—PeweHransfermed—habrtat—swteb#Wmeée# Samples represent a randomly selected subset of

10% of the modelled area due to the high number of points.
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Figure A2-21| Predicted estimates of density (data-driven approach) of Solenosmilia variabilis compared to
predictions of suitable habitat from: (a) linear habitat suitability layer (HSI-linear); (b) thresholded habitat
suitability layer based on the ROC AUC (HSI ROC-linear); (c) power transformed habitat suitability layer (HSI

Table A112-1 | Correlation (Pearson’s r) for the density models of 15 VME indicator taxa and their estimates of
abundance (using DTIS data) within the boundaries of the bioregions (from Costello et al., 2017) overlapping
the area of the study. Cell values with ‘-’ indicate that there was not enough data to evaluate performance and
‘NA’ values indicate that correlation could not be calculated, with all data being 0.

Correlation (Pearson’s r)

VME indicator taxon Tropical Australia  Tasman Sea — SW Mid-South New Southern
& Coral Sea Pacific Tropical Pacific Zealand Ocean

No. of DTIS data 0 0 73 753 6
peintssites

Actiniaria - - 0.712 0.81 NA
Alcyonacea - - 0.724 0.91 0.933
Antipatharia - - 0.828 0.75 0.559
Brisingida - - 0.825 0.958 0.582
Bryozoa - - 0.453 0.991 0.639
Crinoidea - - 0.96 0.857 -0.542
Demospongiae - - 0.731 0.918 0.808
Goniocorella dumosa - - NA 0.897 NA
GorgonaceaiGorgonian - - 0.86 0.93 0.987
Alcyonacea

Hexactinellida - - 0.734 0.728 0.947
Hydrozoa - - 0.899 0.867 0.691
Pennatulacea - - 0.81 0.959 0.984
Solenosmilia variabilis - - 0.617 0.372 0.216
Stylasteridae - - 0.786 0.972 0.93
Zoantharia - - 0.758 0.986 NA
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Table A2-122 | Correlation (Pearson’s r) for the final ensembled (BRT and RF) density models of 15 VME indicator taxa and their estimates of abundance (observations
using DTIS data) within the boundaries of the Fishery Management Areas (FMAs) within the Evaluated Area. Cell values with ‘-" indicate that there was not enough data to
evaluate performance.

Correlation (Pearson’s r)

VME indicator taxon S.Lord Howe N.Lord Howe NW. Challenger = W. Norfolk N. Louisville C. Louisville S. Louisville @ Westpac Bank South Tasman
No. of DTIS data peintssites 0 0 17 0 73 45 0 3 0
Actiniaria - - 0.847 - 0.712 0.84 - -0.99 -
Alcyonacea - - 0.94 - 0.724 0.78 - 0.49 -
Antipatharia = = 0.525 = 0.828 0.495 = 0.99 =
Brisingida - - 0.949 - 0.825 0.941 - 0.95 -
Bryozoa - - 0.036 - 0.453 - - - -
Crinoidea - - -0.153 - 0.96 0.871 - - -
Demospongiae - - 0.951 - 0.731 0.743 - 1.0 -
Goniocorella dumosa - - - - - - - - -
GergenaeeaGorgonian Alcyonacea = = 0.851 = 0.86 0.742 = 0.91 =
Hexactinellida - - 0.101 - 0.734 0.852 - - -
Hydrozoa - - - - 0.899 0.784 - - -
Pennatulacea - - 0.731 - 0.81 0.804 - 0.84 -
Solenosmilia variabilis - - - - 0.617 0.518 - - -
Stylasteridae - - - - 0.786 0.611 - - -

Zoantharia - - - - 0.758 0.949 - - -



Annex 3 - Data-driven models

Figure A3-1 | Predicted density (individuals per km?) of Actinaria in the study area from the hurdle model
approach (DTIS data-driven approach). Inset maps of the high seas in the study area: (a) West Lord Howe Rise;
(b) East Lord Howe Rise; (c) West Norfolk Ridge; (d) North Louisville Seamount Chain; (e) West Challenger
Plateau; (f) Central Louisville Seamount Chain; (g) South Tasman Rise; and (h) South Louisville Seamount Chain.



Figure A3-2 | Coefficient of variation {E\)-{individualsperkm?}(CV) of Actinaria in the study area from the
hurdle model approach (DTIS data-driven approach). Inset maps of the high seas in the study area: (a) West
Lord Howe Rise; (b) East Lord Howe Rise; (c) West Norfolk Ridge; (d) North Louisville Seamount Chain; (e) West
Challenger Plateau; (f) Central Louisville Seamount Chain; (g) South Tasman Rise; and (h) South Louisville
Seamount Chain.
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Figure A3-3 | Predicted density (individuals per km?) of Alcyonacea in the study area from the hurdle model
approach (DTIS data-driven approach). Inset maps of the high seas in the study area: (a) West Lord Howe Rise;
(b) East Lord Howe Rise; (c) West Norfolk Ridge; (d) North Louisville Seamount Chain; (e) West Challenger
Plateau; (f) Central Louisville Seamount Chain; (g) South Tasman Rise; and (h) South Louisville Seamount Chain.
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Figure A3-4 | Coefficient of variation {E\)-{individualsperkm?)(CV) of Alcyonacea in the study area from the
hurdle model approach (DTIS data-driven approach). Inset maps of the high seas in the study area: (a) West
Lord Howe Rise; (b) East Lord Howe Rise; (c) West Norfolk Ridge; (d) North Louisville Seamount Chain; (e) West
Challenger Plateau; (f) Central Louisville Seamount Chain; (g) South Tasman Rise; and (h) South Louisville
Seamount Chain.
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Figure A3-5 | Predicted density (individuals per km?) of Brisingida in the study area from the hurdle model
approach (DTIS data-driven approach). Inset maps of the high seas in the study area: (a) West Lord Howe Rise;
(b) East Lord Howe Rise; (c) West Norfolk Ridge; (d) North Louisville Seamount Chain; (e) West Challenger
Plateau; (f) Central Louisville Seamount Chain; (g) South Tasman Rise; and (h) South Louisville Seamount Chain.
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Figure A3-6 | Coefficient of variation {E\)-{individuals-perkm?}(CV) of Brisingida in the study area from the
hurdle model approach (DTIS data-driven approach). Inset maps of the high seas in the study area: (a) West
Lord Howe Rise; (b) East Lord Howe Rise; (c) West Norfolk Ridge; (d) North Louisville Seamount Chain; (e) West
Challenger Plateau; (f) Central Louisville Seamount Chain; (g) South Tasman Rise; and (h) South Louisville
Seamount Chain.
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Figure A3-7 | Predicted density (individuals per km?) of Bryozoa in the study area from the hurdle model
approach (DTIS data-driven approach). Inset maps of the high seas in the study area: (a) West Lord Howe Rise;
(b) East Lord Howe Rise; (c) West Norfolk Ridge; (d) North Louisville Seamount Chain; (e) West Challenger
Plateau; (f) Central Louisville Seamount Chain; (g) South Tasman Rise; and (h) South Louisville Seamount Chain.
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Figure A3-8 | Coefficient of variation {E\)-individuals-perkm?}(CV) of Bryozoa in the study area from the
hurdle model approach (DTIS data-driven approach). Inset maps of the high seas in the study area: (a) West
Lord Howe Rise; (b) East Lord Howe Rise; (c) West Norfolk Ridge; (d) North Louisville Seamount Chain; (e) West
Challenger Plateau; (f) Central Louisville Seamount Chain; (g) South Tasman Rise; and (h) South Louisville
Seamount Chain.
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Figure A3-9 | Predicted density (individuals per km?) of Crinoidea in the study area from the hurdle model
approach (DTIS data-driven approach). Inset maps of the high seas in the study area: (a) West Lord Howe Rise;
(b) East Lord Howe Rise; (c) West Norfolk Ridge; (d) North Louisville Seamount Chain; (e) West Challenger
Plateau; (f) Central Louisville Seamount Chain; (g) South Tasman Rise; and (h) South Louisville Seamount Chain.
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Figure A3-10 | Coefficient of variation {E\V)-{individualsperkm?}(CV) of Crinoidea in the study area from the
hurdle model approach (DTIS data-driven approach). Inset maps of the high seas in the study area: (a) West
Lord Howe Rise; (b) East Lord Howe Rise; (c) West Norfolk Ridge; (d) North Louisville Seamount Chain; (e) West
Challenger Plateau; (f) Central Louisville Seamount Chain; (g) South Tasman Rise; and (h) South Louisville
Seamount Chain.
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Figure A3-11 | Predicted density (individuals per km?) of Demospongiae in the study area from the hurdle
model approach (DTIS data-driven approach). Inset maps of the high seas in the study area: (a) West Lord
Howe Rise; (b) East Lord Howe Rise; (c) West Norfolk Ridge; (d) North Louisville Seamount Chain; (e) West
Challenger Plateau; (f) Central Louisville Seamount Chain; (g) South Tasman Rise; and (h) South Louisville
Seamount Chain.
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Figure A3-12 | Coefficient of variation {C\){individuals-perkm?)(CV) of DesmospengiaeDemospongiae in the
study area from the hurdle model approach (DTIS data-driven approach). Inset maps of the high seas in the
study area: (a) West Lord Howe Rise; (b) East Lord Howe Rise; (c) West Norfolk Ridge; (d) North Louisville
Seamount Chain; (e) West Challenger Plateau; (f) Central Louisville Seamount Chain; (g) South Tasman Rise;
and (h) South Louisville Seamount Chain.
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Figure A3-13 | Predicted density (individuals per km?) of Goniocorella dumosa in the study area from the
hurdle model approach (DTIS data-driven approach). Inset maps of the high seas in the study area: (a) West
Lord Howe Rise; (b) East Lord Howe Rise; (c) West Norfolk Ridge; (d) North Louisville Seamount Chain; (e) West
Challenger Plateau; (f) Central Louisville Seamount Chain; (g) South Tasman Rise; and (h) South Louisville
Seamount Chain.
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Figure A3-14 | Coefficient of variation {C\)-{individuals-perkm?}(CV) of Goniocorella dumosa in the study area

from the hurdle model approach (DTIS data-driven approach). Inset maps of the high seas in the study area: (a)
West Lord Howe Rise; (b) East Lord Howe Rise; (c) West Norfolk Ridge; (d) North Louisville Seamount Chain; (e)
West Challenger Plateau; (f) Central Louisville Seamount Chain; (g) South Tasman Rise; and (h) South Louisville

Seamount Chain.
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Figure A3-15 | Predicted density (individuals per km?) of Gorgonian Alcyonacea in the study area from the
hurdle model approach (DTIS data-driven approach). Inset maps of the high seas in the study area: (a) West
Lord Howe Rise; (b) East Lord Howe Rise; (c) West Norfolk Ridge; (d) North Louisville Seamount Chain; (e) West
Challenger Plateau; (f) Central Louisville Seamount Chain; (g) South Tasman Rise; and (h) South Louisville
Seamount Chain.
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Figure A3-16 | Coefficient of variation {&\)-lindividualsperkm?}(CV) of Gorgonian Alcyonacea in the study area
from the hurdle model approach (DTIS data-driven approach). Inset maps of the high seas in the study area: (a)
West Lord Howe Rise; (b) East Lord Howe Rise; (c) West Norfolk Ridge; (d) North Louisville Seamount Chain; (e)
West Challenger Plateau; (f) Central Louisville Seamount Chain; (g) South Tasman Rise; and (h) South Louisville

Seamount Chain.
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Figure A3-17 | Predicted density (individuals per km?) of Hexactinellida in the study area from the hurdle
model approach (DTIS data-driven approach). Inset maps of the high seas in the study area: (a) West Lord
Howe Rise; (b) East Lord Howe Rise; (c) West Norfolk Ridge; (d) North Louisville Seamount Chain; (e) West
Challenger Plateau; (f) Central Louisville Seamount Chain; (g) South Tasman Rise; and (h) South Louisville
Seamount Chain.
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Figure A3-18 | Coefficient of variation {€\V)-{individualsperkm?}(CV) of Hexactinellida in the study area from
the hurdle model approach (DTIS data-driven approach). Inset maps of the high seas in the study area: (a)
West Lord Howe Rise; (b) East Lord Howe Rise; (c) West Norfolk Ridge; (d) North Louisville Seamount Chain; (e)
West Challenger Plateau; (f) Central Louisville Seamount Chain; (g) South Tasman Rise; and (h) South Louisville
Seamount Chain.
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Figure A3-19 | Predicted density (individuals per km?) of Hydrozoa in the study area from the hurdle model
approach (DTIS data-driven approach). Inset maps of the high seas in the study area: (a) West Lord Howe Rise;
(b) East Lord Howe Rise; (c) West Norfolk Ridge; (d) North Louisville Seamount Chain; (e) West Challenger
Plateau; (f) Central Louisville Seamount Chain; (g) South Tasman Rise; and (h) South Louisville Seamount Chain.
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Figure A3-20 | Coefficient of variation {E\V)-{individualsperkm?}(CV) of Hydrozoa in the study area from the
hurdle model approach (DTIS data-driven approach). Inset maps of the high seas in the study area: (a) West
Lord Howe Rise; (b) East Lord Howe Rise; (c) West Norfolk Ridge; (d) North Louisville Seamount Chain; (e) West
Challenger Plateau; (f) Central Louisville Seamount Chain; (g) South Tasman Rise; and (h) South Louisville
Seamount Chain.
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Figure A3-21 | Predicted density (individuals per km?) of Pennatulacea in the study area from the hurdle
model approach (DTIS data-driven approach). Inset maps of the high seas in the study area: (a) West Lord
Howe Rise; (b) East Lord Howe Rise; (c) West Norfolk Ridge; (d) North Louisville Seamount Chain; (e) West
Challenger Plateau; (f) Central Louisville Seamount Chain; (g) South Tasman Rise; and (h) South Louisville
Seamount Chain.
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Figure A3-22 | Coefficient of variation {€\)-{individualsperkm?}(CV) of Pennatulacea in the study area from
the hurdle model approach (DTIS data-driven approach). Inset maps of the high seas in the study area: (a)
West Lord Howe Rise; (b) East Lord Howe Rise; (c) West Norfolk Ridge; (d) North Louisville Seamount Chain; (e)
West Challenger Plateau; (f) Central Louisville Seamount Chain; (g) South Tasman Rise; and (h) South Louisville
Seamount Chain.
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Figure A3-23 | Predicted density (individuals per km?) of Stylasteridae in the study area from the hurdle model
approach (DTIS data-driven approach). Inset maps of the high seas in the study area: (a) West Lord Howe Rise;
(b) East Lord Howe Rise; (c) West Norfolk Ridge; (d) North Louisville Seamount Chain; (e) West Challenger

Plateau; (f) Central Louisville Seamount Chain; (g) South Tasman Rise; and (h) South Louisville Seamount Chain.
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Figure A3-24 | Coefficient of variation {E\V}-{individualsperkm?}(CV) of Stylasteridae in the study area from the
hurdle model approach (DTIS data-driven approach). Inset maps of the high seas in the study area: (a) West
Lord Howe Rise; (b) East Lord Howe Rise; (c) West Norfolk Ridge; (d) North Louisville Seamount Chain; (e) West
Challenger Plateau; (f) Central Louisville Seamount Chain; (g) South Tasman Rise; and (h) South Louisville
Seamount Chain.
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Figure A325 | Predicted density (individuals per km?) of Solenosmilia variabilis in the study area from the
hurdle model approach (DTIS data-driven approach). Inset maps of the high seas in the study area: (a) West
Lord Howe Rise; (b) East Lord Howe Rise; (c) West Norfolk Ridge; (d) North Louisville Seamount Chain; (e) West
Challenger Plateau; (f) Central Louisville Seamount Chain; (g) South Tasman Rise; and (h) South Louisville
Seamount Chain.
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Figure A3-26 | Coefficient of variation {&\)-{individuals-perkm?}(CV) of Solenosmilia variabilis in the study area
from the hurdle model approach (DTIS data-driven approach). Inset maps of the high seas in the study area: (a)
West Lord Howe Rise; (b) East Lord Howe Rise; (c) West Norfolk Ridge; (d) North Louisville Seamount Chain; (e)
West Challenger Plateau; (f) Central Louisville Seamount Chain; (g) South Tasman Rise; and (h) South Louisville

Seamount Chain.
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Figure A3-27 | Predicted density (individuals per km?) of Zoantharia in the study area from the hurdle model
approach (DTIS data-driven approach). Inset maps of the high seas in the study area: (a) West Lord Howe Rise;
(b) East Lord Howe Rise; (c) West Norfolk Ridge; (d) North Louisville Seamount Chain; (e) West Challenger
Plateau; (f) Central Louisville Seamount Chain; (g) South Tasman Rise; and (h) South Louisville Seamount Chain.
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Figure A3-28 | Coefficient of variation {€\)-{individualsperkm?}(CV) of Zoantharia in the study area from the
hurdle model approach (DTIS data-driven approach). Inset maps of the high seas in the study area: (a) West
Lord Howe Rise; (b) East Lord Howe Rise; (c) West Norfolk Ridge; (d) North Louisville Seamount Chain; (e) West
Challenger Plateau; (f) Central Louisville Seamount Chain; (g) South Tasman Rise; and (h) South Louisville
Seamount Chain.
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Annex 4 - Environmental coverage for data-driven models

Figure A4-1 | Environmental coverage for Actinaria, ranging from low (0) to high (1) between 200 and 3000 m
depth within the study area. Developed for Actinaria based on the taxon-specific environmental variables
shown in Table 2Fable2.

Figure A4-2 | Environmental coverage for Alcyonacea, ranging from low (0) to high (1) between 200 and 3000
m depth within the study area. Developed for Alcyonacea based on the taxon-specific environmental variables
shown in Table 2Table-2,
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Figure A4-3 | Environmental coverage for Antipatharia, ranging from low (0) to high (1) between 200 and 3000
m depth within the study area. Developed for Antipatharia based on the taxon-specific environmental
variables shown in Table 2Fable-2.

Figure A44 | Environmental coverage for Brisingida, ranging from low (0) to high (1) between 200 and 3000 m
depth within the study area. Developed for Brisingida based on the taxon-specific environmental variables
shown in Table 2Fable-2.
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Figure A4-5 | Environmental coverage for Bryozoa, ranging from low (0) to high (1) between 200 and 3000 m
depth within the study area. Developed for Bryozoa based on the taxon-specific environmental variables
shown in Table 2Fable2.

Figure A4-6 | Environmental coverage for Crinoidea, ranging from low (0) to high (1) between 200 and 3000 m
depth within the study area. Developed for Crinoidea based on the taxon-specific environmental variables
shown in Table 2Table2.
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Figure A4-7 | Environmental coverage for Demospongiae, ranging from low (0) to high (1) between 200 and
3000 m depth within the study area. Developed for Demospongiae based on the taxon-specific environmental
variables shown in Table 2Fable-2.

Figure A4-8 | Environmental coverage for Goniocorella dumosa, ranging from low (0) to high (1) between 200
and 3000 m depth within the study area. Developed for Goniocorella dumosa based on the taxon-specific
environmental variables shown in Table 2Fable-2.
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Figure A4-9 | Environmental coverage for Gorgonian Alcyonacea, ranging from low (0) to high (1) between 200
and 3000 m depth within the study area. Developed for Gorgonian Alcyonacea based on the taxon-specific
environmental variables shown in Table 2Fable2.

Figure A4-10 | Environmental coverage for Hexactinellida, ranging from low (0) to high (1) between 200 and
3000 m depth within the study area. Developed for Hexactinellida based on the taxon-specific environmental
variables shown in Table 2Fable-2.
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Figure A411 | Environmental coverage for Hydrozoa, ranging from low (0) to high (1) between 200 and 3000 m
depth within the study area. Developed for Hydrozoa based on the taxon-specific environmental variables
shown in Table 2Table 2.

Figure A4-12 | Environmental coverage for Pennatulacea, ranging from low (0) to high (1) between 200 and
3000 m depth within the study area. Developed for Pennatulacea based on the taxon-specific environmental
variables shown in Table 2Fable-2.
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Figure A4-13 | Environmental coverage for Solenosmilia variabilis, ranging from low (0) to high (1) between
200 and 3000 m depth within the study area. Developed for Solenosmilia variabilis based on the taxon-specific
environmental variables shown in Table 2Fable-2.

Figure A4-14 | Environmental coverage for Stylasteridae, ranging from low (0) to high (1) between 200 and
3000 m depth within the study area. Developed for Stylasteridae based on the taxon-specific environmental
variables shown in Table 2Fable 2.
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Figure A4-15 | Environmental coverage for Zoantharia, ranging from low (0) to high (1) between 200 and 3000
m depth within the study area. Developed for Zorantharia based on the taxon-specific environmental variables
shown in Table 2Table-2.
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Annex 5 — Relative environmental suitability (RES) models - Experts

results

Table A5-11315 | Number of experts that selected the top-4 most selected environmental variables.

No. of experts that selected each environmental variable

Aragonite saturation

Taxa at depth
Enallopsammia rostrata 5
Goniocorella dumosa 6
Madrepora oculata 6
Solenosmilia variabilis 4

Bathymetric position
index
6

5
5
5

Particulate organic
carbon export

6

5
5
6

Temperature

at depth

4

4
4
4

Table A5-2 | Anonymised expert input for the principles-based approach (RES models) applied to 4 stony coral
taxa (GDU: Goniocorella dumosa; SVA: Solenosmilia variabilis; MOC: Madrepora oculata; ERO: Enallopsammia
rostrata). Experts are anonymised and numbered (1-8). POC: particulate organic carbon export. The input in

the table below has been amended following requests to each expert for clarification or additional

information.

VME
indicator
taxa

GDU

Expert

N NN N OO0 1l AR WWWWNNNNN R R

Environmental variable

BPI-broad

POC

Aragonite saturation
Dissolved oxygen at depth
Mud

Temperature

BPI-broad

Dissolved oxygen at depth
POC

Temperature

BPI-broad

POC

Temperature

Aragonite saturation

POC

Ruggedness

Temperature

BPI-broad

Gravel

POC

Aragonite saturation
BPI-broad

Dissolved oxygen at depth
PoC

Shape Abso.Iute
min
Plateau
Linear
Plateau
Linear decay
Linear decay
Trapezoid 0
Plateau 0
Plateau 3
Plateau 2
Trapezoid 3
Linear 250
Trapezoid 15
Trapezoid 4
Trapezoid 0.07
Linear 0.44
Linear 0
Trapezoid 3
Trapezoid 0
Plateau 5
Plateau 5
Plateau 0.8
Plateau -500
Plateau 35
Linear 2
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Preferred
min
200

5
2.5

500

350
20

0.47
0.44

500
20
20
1.5

500
4.5

Preferred
max

1000

10
500
35
10
3.2

10
2000

Absolute
max

14
1000
40
15
3.2

12
3000



VME
indicator
taxa

SVA

MOC

Expert

00 00 U1 L1 L1 L1 B B B W W W WNNDNDNRRPNSNSN NGO O O GG o a b BB B W w w w N NN PP

Environmental variable

BPI-broad

POC

Aragonite saturation
Dissolved oxygen at depth
Mud

Temperature
Aragonite saturation
BPI-broad

POC

Temperature
Aragonite saturation
BPI-broad

POC

Temperature
Aragonite saturation
POC

Seamounts
Temperature
Aragonite saturation
BPI-broad
Seamount
Aragonite saturation
BPI-broad

Dissolved oxygen at depth
POC

BPI-broad

POC

Aragonite saturation
Dissolved oxygen at depth
Mud

Temperature

Gravel

Aragonite saturation
POC

Temperature
BPI-broad

POC

Temperature
Aragonite saturation
POC

Seamounts
Temperature
BPI-broad
Seamounts

Aragonite saturation

Shape Abso'lute
min
Plateau
Linear
Plateau
Linear decay
Linear decay
Trapezoid 0
Plateau 1
Trapezoid 0
Plateau 2
Trapezoid 5
Trapezoid 0.7
Linear 300
Plateau 12
Trapezoid 4
Trapezoid 0.07
Linear 0
Linear 0
Trapezoid 3
Plateau 0.47
Trapezoid 1000
Linear 0
Plateau 0.7
Plateau -500
Plateau 3.5
Linear 2
Plateau 0
Linear 0
Plateau 0
Linear decay
Linear decay
Trapezoid 0
Plateau 5
Plateau 1
Plateau 2
Trapezoid 5
Linear 300
Plateau 12
Trapezoid 4
Trapezoid 0.07
Linear 0
Linear 0
Trapezoid 3
Plateau 0
Linear 0
Plateau 0.47
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Preferred
min
1000

5
2.5

500
15

0.47
0.44

2500

0.9

400

4.5

1000

2.5

Preferred
max

4000

3500

10
1.6
>500
20
10
3.2

0.27

4000

4000

10
>500
20
10
3.2

0.27

4500

Absolute
max

3500

10

30

15

3.2

0.27

4500

14

30

15

3.2

0.27



VME
indicator
taxa

ERO

Expert

N N NN ooy 000 LB R WW W WNNDNNR RN NN YN OO

Environmental variable

BPI-broad
Seamounts
Aragonite saturation
BPI-broad

Dissolved oxygen at depth
POC

BPI-broad

POC

Aragonite saturation
Dissolved oxygen at depth
Mud

Temperature
Aragonite saturation
BPI-broad

POC

Temperature
BPI-broad

POC

Temperature
Aragonite saturation
POC

Seamounts
Temperature
BPI-broad
Seamounts
BPI-broad

POC

Aragonite saturation
BPI-broad

Dissolved oxygen at depth
POC

Shape

Trapezoid
Linear
Plateau
Plateau
Plateau
Linear
Plateau
Linear
Plateau
Linear decay
Linear decay
Trapezoid
Plateau
Trapezoid
Plateau
Trapezoid
Linear
Plateau
Trapezoid
Trapezoid
Linear
Linear
Trapezoid
Plateau
Linear
Trapezoid
Plateau
Plateau
Plateau
Plateau

Linear
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Absolute
min
1000
0
0.8
-500

o O o N

U N O - O

350
12

O o w o o o b

500

0.8
-1000
3.5

Preferred
min
2500
1
1
300
4.5

500

2.5

0.47
0.44

2000

1000
10
0.9
900
4.5

Preferred
max

4000

2000

3500

10

>500

20

10

3.2

0.27

4500

4000

Absolute
max

4500

3500

10

30

15

3.2

0.27

4500



Table A5-3 | List of experts contacted for the principles-based approach. Experts’ name and affiliated
institution shown, as well as, whether expert has provided input, or has declined to provide input. Note: some
experts may not have provided input or declined to provide input due to the timeline given for feedback.

Name Institution Input received Used in RES model
Di Tracey NIWA Y Y
Owen Anderson NIWA Y Y
Dave Bowden NIWA Y Y
Ashley Rowden NIWA Y Y
Malcolm Clark NIWA Y Y
Jenny Beaumont NIWA Y Y
Kareen Schnabel NIWA Declined

Sonia Rowley UH

Santiago Herrera LU

Vonda Wareham FOC

Vreni Haussermann Ssu Declined

Chris Yesson Z5L Y Y
Franzis Althaus CSIRO

Thomas Schlacher usc

Pal Mortensen IMR

Les Watling UH

Rhian Waller UM

Anna Metaxas DU

Kerry Howell PU

Chris Rooper DFO Y Y
Andrew Davies URI

Lyndsey Holland DOC Declined
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Annex 6 - Relative environmental suitability (RES) models

Figure A6-1 | Predicted relative density (0-1) in the study area from the hurdled principles-based approach
(expert informed) for Enallopsammia rostrata. Inset maps of the high seas in the study area: (a) West Lord
Howe Rise; (b) East Lord Howe Rise; (c) West Norfolk Ridge; (d) North Louisville Seamount Chain; (e) West
Challenger Plateau; (f) Central Louisville Seamount Chain; (g) South Tasman Rise; and (h) South Louisville

Seamount Chain.

Figure A6-2 | Relationships between Enallopsammia rostrata abundance (DTIS data) compared to predictions
used to estimate density from: (a) principles-based approach (RES); and to predictions of suitable habitat from:
(b) habitat suitability layer (HSI-linear), and (c) ROC AUC thresholded habitat suitability layer (HSI ROC-
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Figure A6-3 | Predicted relative density (0-1) in the study area from the hurdled principles-based approach
(expert informed) for Madrepora oculata. Inset maps of the high seas in the study area: (a) West Lord Howe
Rise; (b) East Lord Howe Rise; (c) West Norfolk Ridge; (d) North Louisville Seamount Chain; (e) West Challenger
Plateau; (f) Central Louisville Seamount Chain; (g) South Tasman Rise; and (h) South Louisville Seamount Chain.
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Figure A6-4 | Relationships between Madrepora oculata abundance (DTIS data) compared to predictions used
to estimate density from: (a) principles-based approach (RES); and to predictions of suitable habitat from: (b)
habitat suitability layer (HSI-linear), and (c) ROC AUC thresholded habitat suitability layer (HSI ROC-linear)frem

Figure A6-5 | Predicted relative density (0-1) in the study area from the hurdled principles-based approach

(expert informed) for Solenosmilia variabilis. Inset maps of the high seas in the study area: (a) West Lord Howe
Rise; (b) East Lord Howe Rise; (c) West Norfolk Ridge; (d) North Louisville Seamount Chain; (e) West Challenger
Plateau; (f) Central Louisville Seamount Chain; (g) South Tasman Rise; and (h) South Louisville Seamount Chain.
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Figure A6-6 | Relationships between Solenosmilia variabilis abundance (DTIS data) compared to predictions
used to estimate density from: (a) principles-based approach (RES); and to predictions of suitable habitat from:

(b) habitat suitability layer (HSI-linear), and (c) ROC AUC thresholded habitat suitability layer (HSI ROC-

linear)from-different methodsused-to - or-proxvrforlabundance 5 sles-based-aooroachR

Annex 7 - VAST models

Figure A7-1 | Location of pseudo-absence records (n=8193) for Demospongiae using target group background
(TGB) generation within the study area.
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Figure A7-2 | Location of pseudo-absence records (n=22110) for Demospongiae using random generation
(10x) within the study area.
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Figure A7-3 | VAST spatial model (spatial and environmental effects) predicting relative density of
Demospongiae with target-group background (TGB) generated pseudo-absences within the study area.

Figure A7-4 | Coefficient of variation from the VAST spatial model (spatial and environmental effects)
predicting relative density of Demospongiae with target-group background (TGB) generated pseudo-absences
within the study area.
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Figure A7-5 | VAST spatial model (spatial and environmental effects) predicting relative density of
Demospongiae with randomly generated (10x) pseudo-absences within the study area.

Figure A7-6 | Coefficient of variation from the VAST spatial model (spatial and environmental effects)
predicting relative density of Demospongiae with randomly generated (10x) pseudo-absences within the study
area.
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