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Abstract

The spatial distribution and the habitat selection are key factor in population dynamics

of pelagic fish stocks, but are often not explicitly included in ecological studies or age- or

size-structured stock assessment models (SAMs). The main types of data commonly used

in SAMs are catch, composition (e.g. age/length, sex and weight) and indices of relative

abundance. Fishery-independent indices from standardized surveys are often difficult to

obtain for logistic and funding reasons or occur during a specific season. Therefore, many

SAMs rely on indices of relative abundance based on fishery catch-per-unit-of-effort (CPUE)

which can be influenced by several factors that promote its spatial variation challenging its

standardization (e.g. environmental-conditions, fishing methods, season/area fished and

vessel-size). This study standardized the data of Chilean jack mackerel fishery-dependent

CPUE from central-southern Chile for the period 1994-2023 using Bayesian hierarchical

spatio-temporal models with the integrated nested Laplace approximation (INLA). Jack

mackerel CPUE was best explained by vessel hold-capacity, days at the sea, quarter, year, the

spatio-temporal component and environmental conditions (here sea surface temperature and

chlorophyll-a). In terms of spatio-temporal distribution, jack mackerel biomass prediction

maps showed a variable interannual pattern with two periods of coastal concentration (1995-

2001 and 2012-2023) and one of offshore expansion (2002-2011). The standardized series of

CPUE suggested a stable period of high biomass that reached its maximum in 2006, from

when it declined steadily. Then, since 2015, an increase in the CPUE is observed, which was
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associated with a greater availability of fishing close to the main fishing ports. In addition,

the included environmental variables showed an improvement in the goodness-of-fit of the

standardization model, suggesting a habitat-based aggregation of jack mackerel biomass.

This approach provides a new spatio-temporal standardized jack mackerel CPUE series that

could be used in the Joint-Jack-Mackerel-SAM.
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1. Introduction

Scientific advice on fisheries management is generally based on the results of the ap-

plication of some form of stock assessment technique (Hilborn & Walters, 2013). Size- or

age- structured population dynamics models are fit to different data sets to estimate model

parameters and associated derived management quantities. Three primary types of data are

commonly used in fish stock assessment models: catch, indices of relative abundance and

composition data representing the proportions of the sampled population within different

age, length, sex, and/or weight categories (Maunder et al., 2020). While indices provide

information on trends in abundance, the composition data provide information on the com-

ponent of the population represented by the index, and the size or age of the fish removed by

the fishery. Indices based on fishery-independent data from standardized scientific surveys

are often difficult to collect for economic and technical reasons (Maunder & Punt, 2004).

Furthermore, scientific surveys usually occur during specific months or seasons, and provide

no information about the stock during the rest of the year. For this reason, many stock

assessments rely on indices of relative abundance based on fishery catch-per-unit-of-effort

(CPUE) data (Maunder et al., 2006), which can be influenced by several factors, including

environmental conditions, fishing methods, season, area fished, vessel size, fishing restric-

tions, and economics that may invalidate the assumption that the index is proportional to

abundance (Hilborn & Walters, 2013; Thorson et al., 2016). For this reason, it becomes nec-

essary to standardize the CPUE index in an effort to eliminate the effects of these factors

(Hilborn & Walters, 2013)

The standardization of CPUE can be challenging and frequently involves separate steps,

in which the standardization process and population dynamics are fitted independently

(Maunder, 2001). Various methods are used to standardize CPUE, of which Generalized

Linear Models (GLM) are the most common to account for linear relationships between

the response variable and the covariates (Maunder & Punt, 2004; Lynch et al., 2012; Payá,

2022) and Generalized Additive Models (GAM) which also allow for fitting non-linear re-
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lationships between variables. Most of these methods commonly incorporate location as

a factor without an additional term for time-space interaction. This approach implicitly

assumes that the estimated time effect (i.e., the temporal trend, commonly interannual),

which is assumed to be a proxy of relative abundance, is the same in each spatial stratum,

and that only the average CPUE differs among strata (Maunder et al., 2020). The assump-

tions underlying this approach can lead to bias in the estimated index of relative abundance

in several situations, including when the spatial distribution of the stock changes over time

(Punt et al., 2000). Thus, both spatial and temporal correlation must be considered during

the modelling process because observations of species at geographically close locations are

subject to similar life habits and environmental characteristics (Thorson & Barnett, 2017).

Commonly, commercial fishery data are records of a specific vessel at a given time and loca-

tion. For this type of nested data, spatial models using hierarchical approaches are known

to perform well (Izquierdo et al., 2022). Recently, several authors have used Bayesian Hi-

erarchical Spatio-Temporal models (BHSTM) fitted through the integrated nested Laplace

approximation (INLA) (Rue et al., 2009) in single-species CPUE standardization (e.g. (Cao

et al., 2011; Zhou et al., 2019; Ijima & Koike, 2021; Izquierdo et al., 2022)). BHSTM have an

advantage over common CPUE standardization models (e.g. GLM or GAM) by accounting

for spatio-temporal autocorrelation through spatially structured random effects and autore-

gressive terms, thereby reducing uncertainty of estimated biomass indices (Cosandey-Godin

et al., 2015; Izquierdo et al., 2022). It is worth to note that BHSTM also allow the inclusion

of linear or smoothed (non-linear) terms for environmental covariates, which can be key to

explain spatio-temporal distribution of species biomass (Munoz et al., 2013; Paradinas et al.,

2017; Izquierdo et al., 2022)

Chilean jack mackerel (CHJM; Trachurus murphyi, Nichols) a transboundary pelagic

species that is widely distributed in the southeastern Pacific ocean off Chile and Peru,

reaching across to New Zealand and Tasmania (Bailey, 1989; Grechina et al., 1998). The

wide distribution of this species and its highly migratory behavior make it difficult to gather

evidence supporting specific hypotheses about its spatial dynamics and population structure.
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Furthermore, due to its transzonal nature, CHJM is caught by several fleets that operate

in different areas of its global distribution, with the purse seiner fleet from central-southern

Chile as the most important in terms of landings. The biomass index based on the CPUE

standarization of the central-southern Chilean purse seiner fleet is one of the main indices

used in the SPRFMO joint jack mackerel (JJM) stock assessment model which is standard-

ized by traditional methods (i.e. GLM, (Payá, 2022)). However, in this region the spatial

distribution of the CHJM has changed over time (Figure 1), which poses difficulties for the

standardization of the CPUE and can lead to biases in its estimation. This contribution aims

to assess the spatio-temporal variability of CHJM distribution in central-southern Chile and

to derive a standardized CPUE index that could be used as input to JJM stock assessment

model. To this end, we apply BHSTM via INLA to map CHJM biomass accounting for

vessel-related variables, spatio-temporal autocorrelation, and possible relationships with en-

vironmental covariates, such as Sea Surface Temperature and Chlorophyll-a. The presented

approach enables the inclusion of different variables through various types of random effects

and to consider spatio-temporal dependence for data sets with consecutive time units (e.g.

quarters or years).

2. Methods

2.1. CHJM Purse-seine fishery data

This study analysed data from the Chilean jack mackerel purse-seine fishery off central-

southern Chile. As we were interested in long-term variability in CHJM index of biomass, the

period 1994–2023 were selected, a period with availability of reliable data on the position and

date of individual fishing sets that were the basis of the analysis. The data set comes from

a joint effort of the two main Chilean fisheries research institutes focused on CHJM (IFOP

and INPESCA), which developed a unique data set for the CHJM fishing sets referenced in

time and space. Number of records, operational details of the fishing activity and technical

characteristics of the vessels are summarized in Table 1. One of the limitations of the

data set that emerges is the imbalance in the proportion of the catch effectively referenced
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spatio-temporally, which has increased steadily in the last decade with the implementation

of electronic logs. However, we consider that both the technical characteristics and the

fishing locations are representative of the fishing activity of each year and support their

spatio-temporal evaluation.

Figure 1: Spatio-temporal variability of the Chlean jack mackerel catch in the purse-seine fleet of central-

southern Chile, period 1994-2023.

6



Table 1: Summary of the proportion of the catch referenced spatiotemporally per year, operational details of

the fishing activity and technical characteristics of the vessels for BH modelling of CPUE in CHJM fishery

of central-southern Chile.

Year
Distance from

port [km]

Fishing trip

duration [days]

Catch per

set [tons]

Vessel hold

capacity [m3]

Catch proportion

referenced ST [%]

1994 161.9 2.2 177.2 847 0.3

1995 205.6 2.0 143.5 959 0.9

1996 381.9 3.2 171.2 1073 1.9

1997 192.6 2.7 118.5 1188 2.0

1998 222.4 2.6 153.5 1389 8.6

1999 197.4 2.6 148.7 1354 11.4

2000 224.9 2.6 181.1 1484 13.8

2001 180.6 2.4 174.8 1367 30.2

2002 270.5 3.4 174.4 1243 24.6

2003 413.0 3.3 164.6 1228 19.8

2004 447.9 3.3 225.1 1272 44.9

2005 483.2 3.5 220.5 1251 43.6

2006 284.8 2.5 244.6 1299 7.7

2007 448.7 4.1 192.0 1357 14.5

2008 947.0 7.2 189.6 1346 39.1

2009 845.4 7.2 165.3 1375 36.8

2010 970.2 9.2 151.3 1395 46.0

2011 769.1 8.4 95.9 1532 32.6

2012 253.3 3.6 125.5 1438 76.5

2013 331.7 3.9 141.9 1468 56.4

2014 300.2 5.7 114.5 1577 21.2

2015 541.7 6.2 111.6 1518 40.3

2016 355.6 4.3 159.9 1626 29.2

2017 286.5 4.0 157.8 1614 23.3

2018 281.9 3.8 152.7 1674 16.8

2019 196.2 2.6 211.2 1561 41.2

2020 204.5 2.4 253.8 1564 50.9

2021 185.0 2.5 247.6 1564 69.7

2022 122.1 2.3 242.9 1585 80.9

2023 136.8 1.8 252.9 1578 83.4
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2.2. Environmental variables

Environmental variables influence habitat preferences, which in turn influence catcha-

bility (Arreguín-Sánchez, 1996). To asess the relationship between CHJM catch, locations,

and habitat conditions at these locations, we considered two environmental variables: Sea

Surface Temperature (SST in °C) and Chlorophyll-a (Chl-a). These variables were selected

for analysis because they were shown to be related to CHJM habitat preferences (Núñez

et al., 2004). Daily satellite fields of SST and Chl-a were retrieved from the Copernicus

program (https://www.copernicus.eu/es) at a spatial resolution of 4 x 4 km. Finally, the

values of the environmental variables at each fishing set location were extracted from the

corresponding daily variable maps.

Figure 2: Delaunay triangulation used to calculate the Gaussian Markov random field for the SPDE ap-

proach. Historical observations of Chilean jack mackerel fishing sets are shown in red dots.

2.3. CPUE modelling process

Total CHJM catch (tons) from a single fishing set per trip was used as the response

variable to characterize spatio-temporal CHJM biomass. We utilized the Integrated Nested

Laplace Approach (INLA) of Rue et al. (2009) and the Stochastic Partial Differential Equa-

tions (SPDE) approach of Lindgren et al. (2011) to model a Gaussian spatio-temporal process

with Matérn covariance. The INLA SPDE module allows the construction of a Delaunay
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triangulation covering the region of interest for the estimation (Figure 2). Once the esti-

mation is performed in the observed location, there are additional functions that linearly

interpolate the results within each triangle into a finer regular grid. The CPUE (catch

per vessels hold capacity and days at sea) observed at locations si with i = 1, ....., n was

assumed to be a realization of a Gaussian Field (GF) at locations si and measured error.

Moreover, the spatial process was assumed to be stationary and isotropic, meaning that the

covariance between any two points only depends on their distance. The SPDE approach

is a GF solution with Matérn correlation when > 0. A two-dimensional space triangulated

domain represented the spatial process defined using nodes of a mesh. A projector matrix

links the spatial GF to the locations of the observed data. The CPUE data had a lognormal

distribution, i.e.,

f(y) = 1
y
√
2π

√
τ(−τ(log(y)− µ)2/2),

where µ is the mean and linked to the linear predictor g = µ, and τ > 0 is the precision

parameter and it is an hyperparameter represented by θ = log(τ). According to Paradinas

et al. (2017), we estimated and constant spatial effect model (Model 1), a yearly changing

spatial realization model (Model 2), a yearly correlated or progressive spatial model (Model

3). The models were fitted with INLA with the intercept added as a covariate term in the

list of effects, i.e.,

Model 1: log(ys,t) = β0 + Ts,t +Qs,t + log(Hs,t) + log(Es,t) + Vs

Model 2: log(ys,t) = β0 + Ts,t +Qs,t + log(Hs,t) + log(Es,t) + Vs,t

Model 3: log(ys,t) = β0 + Ts,t +Qs,t + log(Hs,t) + log(Es,t) + Vs,t +
∑k=1

K ρkVs(t−k)

where β0 is the intercept, Ts,t is a year effect, Qs,t is a seasonal effect represented by

quarter, log(Hs,t) is the logarithm of hold capacity of a given vessel operating in location s
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and year t, log(Es,t) is the logarithm of the days at sea of a given fishing vessel in location

s and year t. The term Vs,t is a random spatial effect represented by Vs,t = ws,t.

The Deviance Information Criterion (DIC) (Spiegelhalter et al., 2014), the Watanabe-

Akaike (WAIC) information criterion (Watanabe & Opper, 2010) and Log-Conditional Pre-

dictive Ordinations (LCPO) (Roos et al., 2011) were used to compare the alternative models.

The best compromise between fit, parsimony and predictive quality is the smaller the WAIC,

DIC and LCPO values are. Once the best model was selected, we added Sea Surface Tem-

perature (SST) and Chlorphyll-a (Chl-a) to the linear predictor (Model 4). All models

were fitted using the Integrated Nested Laplace Approximation (INLA) via the R-INLA

environment (https://www.r-inla.org/).

3. Results

The best model for standardizing Chilean jack mackerel included the logarithm of the

vessels hold capacity, the logarithm of the days at sea (included as an offset), the spatio-

temporal component, ear, and quarter (Table 2). In Model 4 that included the environmental

variables (SST and Chl-a) as linear predictors, a small improvement in goodness of fit over

the model 3 was observed. In Model 3 the greatest reduction in DIC, WAIC, and LCPO was

associated with the inclusion of the spatio-temporal component. Figure 3 shows the marginal

posterior distribution of the hyperparameters and the fixed effects of Model 4. The mean

posterior value for the spatial effect range was 121.1 km, while the standard deviation was

0.526. The presence of an autoregressive spatio-temporal term indicated a relative degree

of temporal persistence in the spatial distribution of adult CHJM over the study area.

The medium temporal correlation parameter ρ of the progressive spatio-temporal structure

(0.562) suggested these results.
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Table 2: Model selection process for the Chilean jack mackerel Trachurus murphyi CPUE standardization

in the fishery of central-southern Chile within the period 1994–2023

Selection of models DIC WAIC LCPO

Model 1 90082.6 90395.9 1.375

Model 2 88305.1 88521.9 1.343

Model 3 88097.8 88391.1 1.341

Model 4 88041.3 88327.2 1.340

As can be seen in Figure 3, the posterior distribution of the environmental effects suggests

that both covariates (Sea Surface Temperature, β1 and Chlorophyll-a, β2) have a significant

influence on driving the CHJM biomass distribution, positively influencing the CPUE. Thus,

these results indicate that the CHJM biomass tends to be higher in warmer regions with

higher chlorophyll-a concentration.

Figure 3: Marginal posterior distribution for the practical range (top-middle), standard deviation of the

Gaussian field (top-rigth), the temporal correlation (bottom-left), the sea surface temperature (β1, fixed

effects; bottom-middle), the chlorophyll-a (β2, fixed effects; bottom-rigth)

11



The linear effect for the variable vessel hold capacity showed that the relationship between

catch biomass and vessel hold capacity was not strictly linear, for vessels over 1000 m3 where

the catch seems to reach an asymptotic level (Figure 4). This relationship should be carefully

analyzed due to the influence of changes in fishing tactics that have occurred in recent years.

The linear effect for quarter captured well the temporal cyclic trend throughout the year,

with a minimum effect in the fourth quarter and a maximum effect in second quarter (Figure

4).

Figure 4: Marginal linear effects of vessel hold capacity and quarter on the linear predictor scale (logarithmic

link) of the Chilean jack mackerel (CPUE) best model. Shaded regions represent the approximate 95%

credibility interval.

The mean of the posterior predictive distribution for CHJM CPUE revealed areas with

a persistent high concentration of fish in coastal regions during 1994-2001 period, being the
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central coastal near to Talcahuano port the one with maximum values, whereas a low biomass

area is predicted offshore (Figure 5). During the period 2000-2007 the distribution becomes

more opportunistic, with non-persistent high CPUE areas located both in coastal and oceanic

regions (Figure 5). Subsequently, a period of low CPUE is observed between 2008 and

2015 where the biomass was recorded dispersed without areas of high concentration and a

non-persistent distribution of CPUE. Finally, the most recent period, 2016-2023, has been

characterized by an increasing trend in CHJM biomass with a persistent distribution of high

CPUE in the coastal region (up to 200 km offshore) where biomass has been concentrated

in locations close to the Talcahuano fishing port (Figura 5).

Figure 5: Estimates of the spatio-temporal mean for the CPUE of Chilean jack mackerel in central-southern

Chile.
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Figure 6: Spatio-temporal predicted biomass (CPUE) index of Chilean jack mackerel (Trachurus murphyi)

fishery of central-southern Chile. Shaded lower and upper limits represent the standard deviation of the

prediction. This time-series has been obtained from the mean of the predicted biomass (CPUE) yearly maps.

Finally, derived spatio-temporal predicted CPUE time-series was obtained from the mean

of the predicted biomass (CPUE) yearly maps and is showed in Figure 6. The interannual

variability in the CPUE shows an initial period with high values that reach a historical

maximum in 2006. Afterwards, a sustained fall is observed until reaching the lowest value

in the time series in 2011. The period 2011-2017 was characterized by low CHJM CPUE

values. Since 2015, a increasing trend has been observed that partially breaks in 2020 with

a specific decline. The last period, 2020-2023, is characterized by a moderate upward trend

associated with a greater concentration and availability of fishing in localities close to fishing

ports.
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4. Concluding remarks

1. The spatial distribution of jack mackerel in central-southern Chile has changed over

time, which imposes a limitation for the estimation of the CPUE by means of traditional

methods (e.g. GLM, GAM).

2. Bayesian hierarchical spatio-temporal models have an advantage over traditional

CPUE standardization models by accounting for spatio-temporal autocorrelation through

spatially structured random effects and autoregressive terms, thereby reducing uncertainty

of estimated biomass indices.

3. A database of individual fishing sets from the CHJM purse-seine fishery generated

from the joint effort of IFOP and INPESCA was used. One of the limitations of the data set

that emerges is the imbalance in the proportion of the catch effectively referenced spatio-

temporally, which has increased steadily in the last decade with the implementation of

electronic logs.

4. The best model for standardizing Chilean jack mackerel included the logarithm of the

vessels hold capacity, the logarithm of the days at sea (included as an offset), the spatio-

temporal component, year and quarter.

5. The linear effect for the variable vessel hold capacity showed that the relationship

between catch biomass and vessel capacity was not strictly linear, for vessels over 1000 m3

where the catch seems to reach an asymptotic level.

6. The posterior distribution of the environmental effects suggests that Sea Surface

Temperature and Chlorophyll have a significant influence on driving the CHJM biomass

distribution, positively influencing the CPUE.
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7. The mean of the posterior predictive distribution for CHJM CPUE revealed areas with

a persistent high concentration of fish in coastal regions during 1994-2001 period. During

the period 2000-2007 the distribution becomes more opportunistic, with non-persistent high

CPUE areas located both in the coastal and oceanic regions. A period of low CPUE is

observed between 2008 and 2015 where the biomass was recorded dispersed without areas

of high concentration and a non-persistent distribution of CPUE. The most recent period,

2016-2023, has been characterized by an increasing trend in CHJM biomass with a persistent

distribution of high CPUE in the coastal region (up to 200 km offshore).

8. The interannual variability in the CPUE reveals an initial period with high values that

reach a historical maximum in 2006. Afterwards, a sustained fall is observed until reaching

the lowest value in 2011. The period 2011-2017 was characterized by low CHJM CPUE

values. Since 2015, a increasing trend has been observed that partially breaks in 2020 with

a specific decline. The last period, 2020-2023, is characterized by a moderate increasing

trend associated with a greater concentration and availability of fishing in localities close to

fishing ports.
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