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SUMMARY 

 

Integrated age-structured models (Stock Synthesis), and surplus production models (JABBA) 

are increasingly run in parallel during stock assessments of tuna and tuna-like species. Yet, the 

choice of parameterization for the two different model types may not always be chosen to be 

compatible. Here, we use age-structured simulation testing to evaluate an approach to translate 

life history parameters into the intrinsic rate of population increase r and the shape parameter 

of the surplus production curve. We apply this approach using the stock parameters for Atlantic 

white marlin (Kajikia albida) and approximate the functional form of a 16-parameter yield 

curve for an age- and sex-structured stock to approximate by the 3-parameter Pella surplus 

production curve. Our simulation results show that a correctly specified JABBA model enables 

fairly accurate estimation of the true stock status quantities SB/SBMSY and F/FMSY with 

satisfactory confidence interval coverage, suggesting that here presented surplus production 

model parameterization provides, in principle, a parsimonious framework for billfish 

assessments with comparable population dynamics.  

 

RÉSUMÉ 

 

Les modèles intégrés structurés par âge (Stock Synthèse) et les modèles de production 

excédentaire (JABBA) sont de plus en plus utilisés en parallèle lors des évaluations des stocks 

de thonidés et d'espèces apparentées. Cependant, le choix du paramétrage pour les deux types 

différents de modèles pourrait ne pas toujours être réalisé de façon à être compatible. Ici, nous 

utilisons des tests de simulation structurés par âge pour évaluer une approche permettant de 

traduire les paramètres du cycle vital en taux intrinsèque d'augmentation r de la population et 

en paramètre de forme de la courbe de production excédentaire. Nous appliquons cette 

approche en utilisant les paramètres de stock pour le makaire blanc de l'Atlantique (Kajikia 

albida) et la forme fonctionnelle d'une courbe de production à 16 paramètres pour un stock 

structuré par âge et par sexe afin de la rapprocher de la courbe de production excédentaire 

Pella à 3 paramètres. Nos résultats de simulation montrent qu'un modèle JABBA correctement 

spécifié permet une estimation assez précise des quantités réelles de l'état des stocks SB/SBPME 

et F/FPME avec un intervalle de confiance satisfaisant, ce qui suggère que le paramétrage du 

modèle de production excédentaire présenté ici fournit, en principe, un cadre moins strict pour 

les évaluations des istiophoridés avec une dynamique de population comparable.  

 

RESUMEN 

 

Los modelos integrados estructurados por edad (Stock Synthesis), y los modelos de producción 

excedente (JABBA) se ejecutan cada vez más en paralelo durante las evaluaciones de stock de 

túnidos y especies afines. Sin embargo, la elección de la parametrización para los dos tipos de 

modelos diferentes no siempre se puede realizar de tal modo que sea compatible. Aquí, usamos 

pruebas de simulación estructuradas por edad para evaluar un enfoque que traduzca los 

parámetros del ciclo vital en la tasa intrínseca de crecimiento de la población r y el parámetro 

de forma de la curva de producción excedente. Aplicamos este enfoque utilizando los 

parámetros de stock para la aguja blanca del Atlántico (Kajikia albida) y la forma funcional de 

una curva de rendimiento de 16 parámetros para un stock estructurado por edad y sexo  para 

 
1 DAFF, Department of Agriculture, Forestry and Fisheries, Private Bag X2, Rogge Bay 8012, South Africa. Corresponding author: 

HenningW@DAFF.gov.za 
2 Instituto do Mar, Universidade Federal de São Paulo, Av. Doutor Carvalho de Mendonça, 144, 11070-100, Santos, Brazil. 
3 Institute of Oceanography, National Taiwan University, Taipei 10617, Taiwan 

mailto:HenningW@DAFF.gov.za


 

220 

aproximarla a la curva de producción excedente de Pella de 3 parámetros. Nuestros resultados 

de la simulación muestran que un modelo JABBA correctamente especificado permite una 

estimación bastante precisa de las cantidades reales del estado del stock SB/SBRMS y F/FRMS con 

una cobertura satisfactoria del intervalo de confianza, lo que sugiere que la parametrización 

del modelo de producción excedente aquí presentado proporciona, en principio, un marco 

menos estricto para las evaluaciones de marlines con una dinámica de población comparable.  
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1. Introduction 

 

Surplus Production Models (SPMs) are one of the least data demanding and parsimonious population dynamic 

models that can be used to provide estimates of stock status, and fisheries reference points (FRPs) such as the 

Maximum Sustainable Yield (MSY). Despite the increased application of age-structured models (ASMs) within 

tuna Regional Management Fisheries Organizations (tRFMOs), SPMs have remained an integral part of the 

assessment toolbox for large pelagic tuna and billfish (Brodziak and Ishimura, 2012; Chang et al., 2014; Punt et 

al., 2015). In particular, billfish assessments are commonly conducted with SPMs (Chang et al., 2014; Punt et 

al., 2015), due to paucity of stock-specific biological information and reliable size structure data. 

 

SPMs are age- and size aggregated models that approximate changes in biomass as a function of the biomass of 

the preceding year, the surplus production in biomass and the removal by the fishery in the form of catch. 

Somatic growth, reproduction, natural mortality and associated density-dependent processes are inseparably 

captured in the estimated surplus production function that is governed by three parameters: (1) the intrinsic rate 

of population increase r (2) the shape parameter m and (3) the unfished equilibrium biomass K. In contrast to 

SPMs, age-structured models (ASMs) allow separating between spawning-biomass (SB) and exploitable biomass 

(EB), where SB is the biomass fraction of mature fish (or females) in the population, and EB is the exploitable 

(vulnerable) biomass fraction of the total biomass that is selected by the fishery. ASMs therefore explicitly 

account for the lag-effect of the biomass response of EB, which is related to the observed abundance index, as 

well as the differential impact of selectivity by multiple fisheries.  This comes with the trade-off of 

approximately ten (and often more) stock parameters to model the population dynamics. In particular, the form 

and steepness (h) of the SRR and estimates of M are highly uncertain. Because it is rarely possible to reliably 

estimate h and M from the data, scientists often fix values for one or both parameters in age-structured stock 

assessments (Lee et al., 2012; Mangel et al., 2013) , thereby making strong presumptions about the stock’s 

resilience and stock status reference points.  

 

The number of ASM-based assessments of tuna and tuna-like species has been continuous increasing over the 

last three decades (Thorson et al.,  2019), with stock synthesis having been playing a leading role in this 

development in recent years. However, due to their low data requirements, SPMs persist as a routine assessment 

tool within their traditional realm of large pelagic tuna, billfish and shark assessments (Carvalho et al., 2014; 

Punt et al., 2015; Winker et al., 2018a). As a result, ASMs, such as stock synthesis (ss3) (Methot and Wetzel, 

2013) , and SPMs, such as JABBA (Winker et al., 2018a) are increasingly run in parallel during stock 

assessments conducted by tuna Regional Management Organizations .  

 

For SPMs, structural and biological uncertainty is typical represented in the form of alternative values of r and 

the shape m of the production function, where Schaefer and Fox formulations are probably the most common 

choices. However, the choice SPM parameterization may not necessarily be compatible with the input 

parameters considered in the ASM assessment runs, where it is common practice to formulate alternative 

scenarios by varying h and M over a range of plausible values. Selecting non-compatible sets of parameters for 

the two different model types can violate the validity model comparison and consequently inference about the 

stock status.  
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Here, we apply an approach that aims to unify the model parameterization between ASMs and SPMs. To do this, 

we first revisit the functional links between the ASEM and Pella-Tomlinson SPM, which we then apply to 

translate input parameters of ASMs into the key SPM parameters r and the shape parameter m. We implement 

this approach using the age- and sex-structured stock parameters for Atlantic white marlin (Kajikia albida) with 

the specific objective to develop surplus production functions formulations as a function of r and the shape m 

that matches the implications of age-structured parameter scenarios put forward for the 2019 ICCAT white 

marlin assessment.      

 

 

2. Material and Methods 

  

2.1. Deriving r priors and shape for surplus production from stock parameters 

 

The following concepts build on previous work by Winker et al. (Winker et al., 2018a, 2018b, 2017). Central to 

their idea of linking age-structured stock parameters and the surplus production function is the application of 

age-structured spawning biomass- and yield-per-recruit models with integrated stock-recruitment relationship 

(SRR), which we subsequently refer to as age-structured equilibrium model (ASEM). This type of model is 

widely used for ASMs to derive MSY-based fisheries reference points (FRPs) from estimated stock parameters 

by searching iteratively for the fishing mortality that produces MSY, FMSY, from the corresponding biomass BMSY 

at MSY (Punt et al., 2013). Typical ASEM inputs are the stock parameters describing length-at-age (La), weight-

at-age (wa), maturity-at-age (ψa) and selectivity-at-age (sa), natural mortality M and the steepness parameter h of 

the of the assumed Beverton and Holt SSR (Punt et al., 2013).   

 

To illustrate the link between the generalized three parameter SPM by Pella and Tomlinson (1969) and the 

ASEM, we first revisit the surplus production function form:  

 

SP =
r

𝑚
B (1 − (

B

B0
)

𝑚−1

)    (1) 

 

where r is the intrinsic rate of population increase at time t, B0 is the unfished biomass and m is a shape 

parameter that determines at which B/B0 ratio maximum surplus production is attained. If the shape parameter m 

= 2, the model reduces to the Schaefer form, with the surplus production (SP) attaining MSY at exactly B0/2. If 0 

< m < 2, SP attains MSY at biomass levels smaller than K/2; the converse applies for values of m greater than 2. 

The Pella-Tomlinson model reduces to a Fox model (Fox, 1970) if m approaches one, resulting in maximum 

surplus production at ~ 0.37SB0, but there is no solution for the exact Fox surplus production with m = 1. 

 

The shape parameter m can be directly translated into the biomass level where MSY is achieved, BMSY, via the 

ratio BMSY/K: 

 

𝐵𝑀𝑆𝑌

𝐵0
= 𝑚

(−
1

𝑚−1
)
     (2) 

 

and the corresponding harvest rate at MSY (HMSY) is: 

 

𝐻𝑀𝑆𝑌 =
𝑟

𝑚−1
(1 −

1

𝑚
)    (3) 

 

where the harvest rate defined here as the ratio of catch to biomass (H = C/B). Correspondingly, MSY can be 

expressed by: 

 

𝑀𝑆𝑌 = 𝐻𝑀𝑆𝑌𝐵𝑀𝑆𝑌     (4) 

 

Combing and re-arranging equations 2, 3, and 4, it follows that r in equation (1) can be expressed as: 

 

𝑟 =
𝑀𝑆𝑌

𝐵𝑀𝑆𝑌

𝑚−1

1−𝑚−1      (5) 
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Equation 2 together with the re-rearranged Equation 5 emphasizes the potential of translating estimates of 

MSY/BMSY and BMSY/K into r and m, respectively (Maunder, 2003; Thorson et al., 2012; Wang et al., 2014; 

Winker et al., 2018a).  In terms of Bayesian model formulations, this lends itself to deriving informative priors 

for r and m from Monte-Carlo Simulations to produce a distribution of likely values for MSY/BMSY and BMSY/B0 

(Mangel et al., 2013; McAllister et al., 2001). However, it remains unclear if BMSY and B0 should be best 

substituted by EBMSY and EB0 (EB-model) or SBMSY and SB0 (SB-model). This will be addressed in the following 

sections. 

 

2.1.1 Age-structured equilibrium model (ASEM) 

 

Assuming deterministic, sex-structured population dynamics, the numbers at age a and sex s per-recruit (𝑁𝑎
𝑠) at 

equilibrium are given by: 

 

 

𝑁𝑎
𝑠 = {

1                                             𝑖𝑓 𝑎 = 0

𝑁𝑎−1
𝑠 exp(−𝑠𝑎

𝑠𝐹 − 𝑀)       𝑖𝑓 𝑎 > 0
   (6) 

 

where 𝑠𝑎
𝑠  is the selectivity at age a and sex s, F is the instantaneous rate of fishing mortality and M instantaneous 

rate of natural mortality. For ease of presentation, we assumed a constant M and omitted the plus group.  

 

The Spawning-biomass-per-recruit (𝑆̃) is obtained as function of F, such that: 

 

𝑆̃(𝐹) = ∑ 𝑤𝑎
𝑓

𝜓𝑎𝑁𝑎
𝑓

 𝑎        (7) 

 

where 𝑤𝑎
𝑓
 is the weight at age for females f, 𝜓𝑎 is the proportion of mature females in the population and 𝑁𝑎

𝑓
  is 

the number of females per recruit, assuming an equal sex ratio at birth.   

 

The corresponding exploitable-biomass-per-recruit (𝐸̃) is obtained as function of F, such that: 

 

𝐸̃(𝐹) = ∑ ∑ 𝑤𝑎
𝑠𝑠𝑎

𝑠𝑁𝑎
𝑠 𝑎𝑠       (8) 

 

The yield-per-recruit of a sex-structured population is given by: 

 

𝑌̃(𝐹) = ∑ ∑
𝑤𝑎

𝑠 𝑠𝑎
𝑠 𝐹

𝑠𝑎
𝑠 𝐹+𝑀𝑎 𝑁𝑎(1 − 𝑒−𝑠𝑎

𝑠 𝐹−𝑀)𝑠    (9) 

 

Under steady state conditions, the yield (Y) can then be expressed as a function of equilibrium recruitment R
~

 

and yield-per-recruit (YPR) 

  

𝑌(𝐹) = 𝑌̃(𝐹) × 𝑅̃(𝐹)      (10) 

 

The corresponding equilibrium spawner-biomass SB is:  

 

𝑆𝐵(𝐹) = 𝑆(𝐹) × 𝑅̃(𝐹)         (11) 

 

and the equilibrium exploitable-biomass is:  

 

𝐸𝐵(𝐹) = 𝐸̃(𝐹) × 𝑅̃(𝐹)               (12) 

 

Assuming a Beverton and Holt SSR, the equilibrium recruitment at F is given by: 

 

𝑅̃(𝐹) = 𝑅0
4ℎ𝑆̃−(1−ℎ)𝑆̃0

𝑆̃(5ℎ−1)
                                     (13) 
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where the steepness parameter h is defined as the ratio of recruitment of average unfished recruitment 𝑅0 when 

spawner biomass is reduced to 20% of unfished levels, SB0, i.e., ( )00 2.0 SBRhR =  (Mace and Doonan, 1988) 

and 0

~
S  is unfished spawner-biomass-per-recruit when F=0. 

 

The quantity MSY and the corresponding fishing mortality at MSY, FMSY, is obtained through iterative 

maximization of Eq. 10 over a range of plausible F values, which then allows calculating SBMSY and EBMSY by 

inputting FMSY into Eq. 11 and 12, respectively.  

 

2.1.2 Prior generation for white marlin surplus production parameters 

 

Prior distributions for r and m were obtained as a function of random deviates of MSY/BMSY and BMSY/B0 that 

were generated from Monte-Carlo simulation based on 5000 iterations, where BMSY and B0 were either 

substituted by EBMSY and EB0 (EB-model) or SBMSY and SB0 (SB-model). However, we noted that ignoring the 

missing males in cases where SBMSY is calculated from mature females would inherently over-estimate the 

productivity per unit biomass and thus r as function of MSY/ BMSY, because in SPMs the modelled quantity BMSY 

would be an aggregated biomass proxy that comprises both sexes. To compensate for this specific case, we 

therefore modified Eq. 5 for approximating r as a function of female-specific SB by: 

 

𝑟 =
𝑀𝑆𝑌

2𝑆𝐵𝑀𝑆𝑌

𝑚−1

1−𝑚−1      (14) 

 

The prior distributions were generated using the following of  steps: (1) randomly generate permutations of M’ 

from the assumed lognormal distribution ( = log(0.2), CV = 0.3)  and input the steepness h given of the three 

considered scenarios (h = 0.5, h = 0.6 or h = 0.7), (2) iteratively maximize Equation 10 over a range of F values 

to obtain deviates of MSY’ and the corresponding 𝐹𝑀𝑆𝑌
′ , (3) input the resulting  𝐹𝑀𝑆𝑌

′  into the ASME to obtain 

the associated 𝐵𝑀𝑆𝑌
′  through either Eq. 11 or Eq. 12, (4) set F = 0 to obtain B0  through Equations 11 or 12, (5) 

calculate ratios 𝑀𝑆𝑌′/𝐵𝑀𝑆𝑌
′  and 𝐵𝑀𝑆𝑌

′ /𝐵0
′  and (5) iteratively solve Eq. 2 for 𝐵𝑀𝑆𝑌

′ /𝐵0
′  to derive m’ and input m’ 

and the ratio 𝑀𝑆𝑌′/𝐵𝑀𝑆𝑌
′  into Equation 2 to obtain r’. Note that ratios of 𝑀𝑆𝑌′/𝐵𝑀𝑆𝑌

′  and 𝐵𝑀𝑆𝑌
′ /𝐵0

′  are 

insensitive to the choice of R0 (in Equation 13) and thus the absolute quantity of SB0, that there is not loss of 

generality by setting R0 = 1.   

 

2.1.3. ASEM parameterization for white marlin surplus production parameters 

 

Stock parameters estimates were broadly based on those used in the 2012 ICCAT Stock Synthesis model, which 

were further refined based discussions during the white marlin Data Preparatory Meeting (2019), including an 

initial range the range of plausible natural mortality and steepness values (Table 1). Three possible values for 

steepness of h = 0.5, 0.6 and 0.7. The central value of h = 0.6 steepness value was adopted as the reference case 

value. Natural mortality was assumed to be M = 0.2, which is consistent with a maximum age tmax = 20 (Hoenig, 

1983). The three alternative steepness values were treated as fixed input into ASPM, whereas uncertainty about 

M was accounted for by assuming a gamma distribution with a fairly large CV of 30% and the central value 

mean value of 0.2 (Figure 1a).    

 

Sex-specific weight-at-age is described as function of the weight to length conversion parameters ω and δ and 

length-at-age for sex s, 
s
aL  (Figure 1b), such that  

 

𝑤𝑎
𝑠 = 𝜔𝐿𝑎

𝑠 𝛿
      (15) 

 

where the two length-weight relationship parameters  𝜔 and 𝛿  were in this case assumed to be the same for both 

sexes (Table 1). The corresponding 
s
aL  was calculated based on the Bertalanffy growth function parameters as: 
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𝐿𝑎
𝑠 = 𝐿∞

𝑠 (1 − 𝑒−𝜅𝑠(𝑎−𝑎0
𝑠 ))     (16) 

 

where 
sL  is the asymptotic length, 

s is the growth coefficient and 
sa0  is the theoretical age at zero length for 

sex s, respectively (Figure 1c).  

 

The fraction of mature females at age t was calculated as: 

 

𝜓𝑎 =
1

1+𝑒
−(𝑙𝑎−𝐿𝑚50)/𝛿𝜓

                   (17) 

 

where 𝐿𝑚50
 is the estimated length-at-50%-maturity (Figure 1d), which was assumed to be 160.4 cm LJFL  

(Table 1) and 𝛿𝜓 is the inverse slope of the ogive fixed a 5% of .  

 

Selectivity-at-age was calculated as a function of length-at-age, La, using a two parameter logistic model of the 

form (Figure 1f): 

 

ss
s
a LL

s
a

e
s

/)( 501

1

−−
+

=       (18) 

 

where 
s
as  is the proportion of fish selected in the age a and sex s, 50sL  is the length at which 50% of the fish are 

retained and δS is the inverse slope of the logistic ogive. The parameters  50sL  and δS were chosen the 

approximate the selectivity of the long-line fishery (Fig. 3e), which is representative of the majority of blue 

marlin landings (Schirripa and Goodyear, 2018).  

 

2.2 Age-structured Simulation experiment 

 

We conducted a simulation experiment to evaluate the performance of the EB-model and SB-model, which we 

implemented as estimation models (EMs) in JABBA (Winker et al., 2018). The simulation procedure first 

creates a true population dynamics from an stochastic age-structured operating model (OM). The OM is used to 

generate typical data moderate fisheries data (catch and indices of abundance). The EMs are fitted to the data and 

estimate the population dynamics and resulting quantities of interest. These results are then compared to the true 

values from the OM.  

For the purpose of this study we considered two EMs both implemented in JABBA (Winker et al., 2018). The 

first EM is the EB-model, which parameterized using the r prior and shape m approximated as function of EB. 

The second EM is identical only that we use the r prior and shape m approximated as function of SB. For both 

EMs and OM , we assume h = 0.6. Detailed descriptions of the OM and EM are given below. 

 

2.2.1 Operating Model 

 

As the operating model (OM) we used the age-structured simulation model by Thorson and Cope (2015). This 

OM has been used for comparisons of stock assessment model performances in a number of previous studies 

(Thorson et al., 2019; Thorson and Cope, 2015; Thorson and Kristensen, 2016) and forms part of the age-

structured simulation-estimation tool that is implement in the open-source package CCSRA (Thorson and Cope, 

2015) within the R statistical software. The population dynamic equations of the OM correspond to the ASEM 

formulation (Section 2.1) and are provided in Appendix A. Growth, maturation, natural mortality, and the BH-

SSR function were described by the stock parameters for white marlin (see Table 1). Stochastic variation in 

recruitment was introduced by treating recruitment as lognormally distributed variable with the expected annual 

means derived from the BH-SSR function and a log-recruitment standard deviation of  𝜎𝑅= 0.5. The unfished 

mean recruitment R0 was set to 100 so as to attain a large enough SB0 that was similar to real world assessment. 
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Compared to the real-world dynamics of white marlin, the simulation experiment is idealized and simplified by 

(1) ignoring the sex-structure and basing the life history on females only and (2) by only generating one CPUE 

index based on a logistic selectivity function that is of the same form as used to generate priors.  

 

A simulation horizon of 50 years was adopted (Figure 2) under the assumption that both catch and abundance 

indices for a single fishery over this time period were available as input into the EMs (c.f. Thorson et al., in 

press). The observed abundance index was generated as the product of EBy and a constant catchability 

coefficient (q = 0.05) with an associated constant, fairly large lognormal observation error of 𝜎𝜀 = 0.3.  

 

We used the effort-dynamics model by (Thorson et al., 2013) to generate unique stochastic realizations of fishing 

mortality trajectories that determine the population dynamics and resultant catch data. Accordingly, the 

instantaneous rate of fishing mortality (Fy) for year y was randomly generated based on a Markovian process: 

 

ln(𝐹𝑦) ~𝑁𝑜𝑟𝑚𝑎𝑙 (ln (𝐹𝑦−1 (
𝑆𝐵𝑦−1

𝛿𝑆𝐵0
)

𝜆

) − 0.5𝜎𝐹
2, 𝜎𝐹

2)    (16) 

 

where 𝐹1 determines the initial fishing mortality at the start of the time series, 𝜆 is the rate of increase in Fy, 𝜎𝐹 

introduces process noise around the underlying trend, and 𝛿 determines the spawning biomass depletion level to 

a ‘bioeconomic’ equilibrium around which that is approached by Fy (see Thorson et al. 2013 for further details). 

We conditioned the simulation model so that stock biomass decreased to low levels ranging between 15% and 

20% at around year 30, followed by varying strength of none to slight stock rebuilding (Figure 2). This was 

achieved by setting F1 = 0.01, 𝜆 = 0.12, 𝛿 = 0.15, and 𝜎𝐹 = 0.1.  

 

2.2.2 JABBA estimation models 

 

The two JABBA EMs were fitted to the simulated abundance index Iy, and annual catch Cy (in weight) time 

series, where Cy was assumed to be known without error. Catchability q and (additional) observation variance 

𝜎𝑒𝑠𝑡
2  was estimated for the CPUE time series. The fixed observation error was set to 𝜎𝑓𝑖𝑥 = 0.1 to mimic a 

constant 𝜎̂𝑆𝐸𝑖
 = 0.1 for the input time series, so that the total observation is given by 𝜎𝜀

2 = 𝜎𝑒𝑠𝑡
2 + 𝜎𝑓𝑖𝑥

2  . The r 

priors and shape m were those derived from the ASEM according to the EB-model and SB-model, respectively. 

To match the OM, we used the life history parameters of females to generate the r prior and shape m, assuming 

sex-aggregated population dynamics. Note that because of the sex-aggregated population dynamic assumption 

SBMSY correction for missing males (Eq. 15) was not necessary for the simulation experiment. For B0, we used a 

vaguely informative priors with a mean set to the average of the “true” EB0 and SB0 and a CV = 200%. The prior 

for q had a uninformative uniform distribution over a wide range of values. Process and observation variance 

were treated the uninformative inverse-gamma priors x ~1/gamma(0.001,0.001).  

 

2.2.3 Performance metrics 

 

We recorded the relative errors in estimates relative to the ‘true’ value for the stock status SBy=50/SBMSY, EB 

y=50/EBMSY and F y=50/FMSY of the final assessment year 50, as well as MSY. We recorded relative errors 𝑅𝐸𝑗,𝑘  for 

EM j and replicate k  as: 

 

𝑅𝐸𝑗,𝑘 =
(𝑋̂𝑗,𝑘−𝑋𝑗,𝑘)

𝑋𝑗,𝑘
       (19) 

 

where 𝑋̂𝑗,𝑘 is the estimated quantity of interest and 𝑋𝑗,𝑘 is the corresponding ‘true’ value. The accuracy of the 

estimates compared to the ‘true’ values was evaluated using the Median Absolute Relative Error (MARE). To 

assess if the models accurately capture uncertainty, we also computed the ‘confidence interval coverage’ (CIC), 

by calculating the proportion of iterations out of 100 where the true value of a population parameter in the 

terminal year is within the 50%, 80% and 95% confidence intervals (Rudd and Thorson, 2017). 
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3. Results and Discussion 

 

We applied our ASEM approach to transform a total of 16 input parameters, describing the age- and structured 

demographics of white marlin, into the surplus production function parameters r and m, which we approximated 

as function of either EBMSY or SBMSY (Figure 3). Our results confirmed that the functional form of the 16-

parameter age-structured yield curve can be closely approximated by the ASEM-derived parameterization 

equivalent surplus production curves (Figure 3). 

 

The smaller length-50%-selectivity (140 cm) relative to length-at-maturity for females (160.2 cm) resulted in an 

EBMSY that was on average 4.7 times larger than female SBMSY and 2.35 larger than 2 × SBMSY. The latter was 

considered here to compensate for the ‘missing’ males. The difference between EBMSY and SBMSY has notable 

effects on the derived r and m quantities (Figure 3). Given that MSY is the denominator in Equation 5 (and 

remains the same irrespectively of whether EBMSY or SBMSY is taken as a proxy for BMSY), the range of simulated 

r’ values comprised substantially smaller values when using EBMSY instead of SBMSY (Figure 2; Table 2). The 

range of inflection points at MSY was higher for EBMSY/ EB0 = 0.36 – 0.42 than for SBMSY/ SB0 = 0.26 – 0.34 

(Figure 3). In general, the inflection points and thus m decreased with increasing steepness h input values (Table 

2). In the case of white marlin with 𝐿𝑚50
> 𝐿𝑠50

 and assuming logistic selectivity, the larger ratios of EBMSY/ EB0 

also imply that EB behaves hyper-stable relative to SB as biomass is declining.  

 

Randomly generated deviates of 𝐸𝐵𝑀𝑆𝑌
′ /𝐸𝐵0

′  and  𝑆𝐵𝑀𝑆𝑌
′ /𝑆𝐵0

′  were substantial less variable than the generated 

r’ values for fixed input values of h and given the assumed uncertainty about M (CV = 30%), with 𝐸𝐵𝑀𝑆𝑌
′ /𝐸𝐵0

′  

showing the least variation (Figure 3). Whereas steepness and thus m are mainly governed by the choice of the h 

(Equation 2), our results suggest that r is strongly influenced by both M and h. The effect of h on r can be 

inferred from the notable change in central r values for three alternative steepness assumptions (Figure 3).  

 

For our simulation experiment, we generated a total of 100 simulation replicates for each of the two EMs. On 

visual inspection of the first four simulation replicates, the EM-predicted B/BMSY and FMSY trajectories indicated 

some notable differences between EB-model and SB-model (Figure 4). The EB-model tended to approximate the 

‘true’ SBy/SBMSY more closely than the ‘true’ EBy/EBMSY at the start of the time series, when biomass was close to 

unfished levels. However, at biomass levels at and below BMSY , the differences between EBy/EBMSY and SBy/SBMSY 

became smaller and were increasingly difficult to discern visually. As a result both quantities could be could be 

equally approximated by the estimated By/BMSY  from the EB-model for the second half of the time series (Figure 

4). Similarly, the estimated Hy/HMSY from the EB-model closely approximated ‘true’ Fy/FMSY with the exception 

of replicate 3, where Fy/FMSY was underestimated. In contrast to the EB-model, the SB-model showed a general 

tendency to over-estimate By/BMSY and underestimate Hy/HMSY relative to the ‘true’ reference values in three out 

of the first four simulation replicates (Figure 4). 

 

Performance evaluation across the 100 simulation replicates confirmed that the EB-model produced close to 

unbiased estimates of the ‘true’ quantities of SBy=50/SBMSY , EB y=50/EBMSY and F y=50/FMSY for the final assessment 

year. By comparison, the SB-model produced positively biased stock status estimates by systematically 

overestimating SBy=50/SBMSY and EB y=50/EBMSY, while underestimating F y=50/FMSY.  The MARE values suggested 

that the EB-model was able to estimate SBy=50/SBMSY four times more accurately than the SB-model. The MSY 

estimates from both EMs showed a slight negative bias, but were again more accurate for the EB-model.   

 

The EB-model also performed well in terms of the confidence interval coverage (CIC) for the stock status 

quantities SBy=50/SBMSY and F y=50/FMSY (Table 3), with exactly 95% of true values SBy=50/SBMSY falling within the 

95% CIs of the estimated By=50/Bmsy and CICs generally exceeding the estimated 50% and 85% CIs. The CICs 

for Fy=50/FMSY were even better with 100% of the ‘true’ values Fy=50/FMSY falling within the 95% CIs of the 

estimated Hy=50/HMSY (Table 3). 
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The satisfactory CICs of the true stock status quantities SB/SBMSY and F/FMSY for the EB-model suggest that a 

correctly specified JABBA model provides, in principle, a parsimonious framework for billfish assessments with 

comparable population dynamics. Considering three alternative steepness h scenarios  (h = 0.5, h = 0.6 and h = 

0.7) and admitting reasonable uncertainty about M, we propose three sets steepness-specific priors for r and m 

input values derived from the EB-model (Table 2) for consideration in 2019 JABBA assessments scenarios for 

Atlantic white marlin.   

 

  



 

228 

References 

 

Carvalho, F., Ahrens, R., Murie, D., Ponciano, J.M., Aires-da-silva, A., Maunder, M.N., Hazin, F., 2014. 

Incorporating specific change points in catchability in fisheries stock assessment models : An alternative 

approach applied to the blue shark ( Prionace glauca) stock in the south Atlantic Ocean. Fish. Res. 154, 

135–146. doi:10.1016/j.fishres.2014.01.022 

 

Forrest, R.E., Mcallister, M.K., Dorn, M.W., Martell, S.J.D., Stanley, R.D., 2010. Hierarchical Bayesian 

estimation of recruitment parameters and reference points for Pacific rockfishes ( Sebastes spp .) under 

alternative assumptions about the stock – recruit function 1634, 1611–1634. doi:10.1139/F10-077 

 

Fox, W.W., 1970. An Exponential Surplus-Yield Model for Optimizing Exploited Fish Populations. Trans. Am. 

Fish. Soc. 99, 80–88. doi:10.1577/1548-8659(1970)99<80:AESMFO>2.0.CO;2 

 

Hewitt, D.A., Hoenig, J.M., 2005. Comparison of two approaches for estimating natural mortality based on 

longevity * 437, 433–437. 

 

Hoenig, J.M., 1983. Empirical use of longevity data to estimate mortality rates. Fish. Bull. 82, 898–903. 

Lee, H.H., Maunder, M.N., Piner, K.R., Methot, R.D., 2012. Can steepness of the stock-recruitment relationship 

be estimated in fishery stock assessment models? Fish. Res. 125–126, 254–261. 

doi:10.1016/j.fishres.2012.03.001 

 

Mace, P.M., Doonan, I.J., 1988. A generalized bioeconomic simulation model for fish population dynamics, 

New Zealand Fishery Assessment. 

 

Mangel, M., MacCall, A.D., Brodziak, J., Dick, E.J., Forrest, R.E., Pourzard, R., Ralston, S., Chang, Y.-J., Lee, 

H., 2013. A Perspective on Steepness, Reference Points, and Stock Assessment. Can. J. Fish. Aquat. Sci. 

940, 930–940. doi:10.1139/cjfas-2012-0372 

 

Maunder, M.N., 2003. Is it time to discard the Schaefer model from the stock assessment scientist’s toolbox? 

Fish. Res. 61, 145–149. doi:10.1016/S0165-7836(02)00273-4 

 

Methot, R.D., Wetzel, C.R., 2013. Stock synthesis: A biological and statistical framework for fish stock 

assessment and fishery management. Fish. Res. 142, 86–99. 

doi:http://dx.doi.org/10.1016/j.fishres.2012.10.012 

 

Pella, J.J., Tomlinson, P.K., 1969. A generalized stock production model. Inter-American Trop. Tuna Comm. 

Bull. 13, 421–458. 

 

Punt, A.E., Smith, A.D.M., Smith, D.C., Tuck, G.N., Klaer, N.L., 2013. Selecting relative abundance proxies for 

BMSY and BMEY. ICES J. Mar. Sci. 71, 469–483. doi:10.1093/icesjms/fst162 

 

Punt, A.E., Su, N.-J., Sun, C.-L., 2015. Assessing billfish stocks: A review of current methods and some future 

directions. Fish. Res. 166, 103–118. doi:10.1016/j.fishres.2014.07.016 

 

Rudd, M.B., Thorson, J.T., 2017. Accounting for variable recruitment and fishing mortality in length-based 

stock assessments for data-limited fisheries. Can. J. Fish. Aquat. Sci. 17, 1–17. doi:10.1139/cjfas-2017-

0143 

 

Thorson, J.T., Cope, J.M., 2015. Catch curve stock-reduction analysis : An alternative solution to the catch 

equations. Fish. Res. 171, 33–41. doi:10.1016/j.fishres.2014.03.024 

 

Thorson, J.T., Cope, J.M., Branch, T.A., Jensen, O.P., Walters, C.J., 2012. Spawning biomass reference points 

for exploited marine fishes, incorporating taxonomic and body size information. Can. J. Fish. Aquat. Sci. 

69, 1556–1568. doi:10.1139/f2012-077 

 

Thorson, J.T., Kristensen, K., 2016. Implementing a generic method for bias correction in statistical models 

using random effects , with spatial and population dynamics examples. Fish. Res. 175, 66–74. 

 

  



 

229 

Thorson, J.T., Minto, C., Minte-Vera, C. V., Kleisner, K.M., Longo, C., 2013. A new role for effort dynamics in 

the theory of harvested populations and data-poor stock assessment. Can. J. Fish. Aquat. Sci. 70, 1829–

1844. doi:10.1139/cjfas-2013-0280 

 

Thorson, J.T., Rudd, M.B., Winker, H., 2019. The case for estimating recruitment variation in data-moderate and 

data-poor age-structured models (in press). Fish. Res. https://doi.org/10.1016/j.fishres.2018.07.007. 

 

Wang, S.-P., Maunder, M.N., Aires-da-Silva, A., 2014. Selectivity’s distortion of the production function and its 

influence on management advice from surplus production models. Fish. Res. 158, 181–193. 

doi:10.1016/j.fishres.2014.01.017 

 

Winker, H., Carvalho, F., Kapur, M., 2018a. JABBA: Just Another Bayesian Biomass Assessment. Fish. Res. 

204, 275–288. doi:http://doi.org/10.1016/j.fishres.2018.03.01 

 

Winker, H., Carvalho, F., Sow, F.N., Ortiz, M., 2018b. Unifying parameterizations between age-structured and 

surplus production models: An application to Atlantic blue marlin (Makaira nigricans ). ICCAT-

SCRS/2018/092 1–16. 

 

Winker, H., Carvalho, F., Thorson, J.T., Kapur, M., Parker, D., Kerwath, S., Booth, A.J., Kell, L., 2017. 

JABBA-Select: an alternative surplus production model to account for changes in selectivity and relative 

mortality from multiple fisheries. MARAM/IWS/2017/Linefish/P2 1–28. 

 

  



 

230 

Table 1. Summary of life history parameters for Atlantic white blue marlin used as input for the ASEM to 

generate for Bayesian Surplus Production Model assessments. 

 

Parameter Females Males Unit 

L∞ 172.0 160.6 cm 

κ 0.32 0.54 year-1 

t0 -1 -1 years 

a 5.21×10-6 5.21×10-6 cm/g 

b 3.2842 3.2243 kg cm-1 

Lm50 160.4   years  

 8.2   year-1 

amin 0 0 years 

amax 20 37 years 

SL 140 140 cm 

S 7 7 cm-1 

M 0.2 (CV=0.3) year-1 

h 0.5, 0.6, 0.7   

 

Table 2. Mean and standard deviation (log.sd) for a lognormal r prior specifications and associated input values 

for the inflection point BMSY/B0 (~ SBMSY/SB0) as determined by the shape m, derived for three alternative 

steepness h parameters for the EB-model and SB-model    

 

  EB-Model   SB-Model 

Parameters h = 0.5 h = 0.6 h = 0.7   h = 0.5 h = 0.6 h = 0.7 

prior mean r  0.158 0.183 0.201   0.256 0.285 0.305 

 log.sd r 0.162 0.172 0.183   0.271 0.278 0.288 

BMSY/B0 0.42 0.39 0.36   0.34 0.3 0.26 

shape m 1.3 1.12 0.95   0.88 0.69 0.53 

 

 

Table 3. Confidence interval coverage (CIC) for the EB-model and SBmodel denoting the proportion of 

iterations where the ‘true’ values SBy=50/SBMSY and Fy=50/FMSY for the final assessment year (y = 50) fell within 

the JABBA predicted 50%, 80% and 95% confidence intervals (CIs) for By=50/BMSY and Hy=50/HMSY, respectively.  

 

    SB/SBMSY       F/FMSY   

Model CI50% CI80% CI95%   CI50% CI80% CI95% 

EB 0.67 0.86 0.95   0.95 0.99 1 

SB 0.58 0.81 0.91   0.08 0.31 0.58 
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Figure 1. Basic population dynamic functions for Atlantic white marlin showing (a) central value of M (solid 

line) and assumed uncertainty (CV = 30%) , (b) sex-specific weight-at-age functions, (c) sex-specific length-at-

age functions, (d) assumed proportion mature females at age, (e) selectivity-at-length and (f) sex-specific 

selectivity-at-age as a function of sex-specific length-at-age and selectivity-at-length. 
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Figure 2. Simulated age-structured population dynamics for Atlantic white marlin, showing the trajectories of 

SBy/SB0, normalized abundance indices (CPUE; CV = 30%), recruitment deviates (𝜎𝑅 = 0.5) and fishing 

mortality F for the first 20 simulation replicates over 50 year time horizon. 

 

 
Figure 3. (Top Panel) Showing the functional from of the yield curves produced from the Age-Structured 

Equilibrium Model (ASME; solid line) and the JABBA formulation of the Surplus Production function (solid) as 

a function of EB/EB0 and SB/SB0 for a range of fixed steepness values of the spawning recruitment relationship 

(h = 0.4, h = 0.5, h = 0.6) (top panel); (Middle Panel) density distributions of simulated r values from Monte-

Carlo simulations based on the EB-model and SB-model; and (Lower Panel) boxplot generated inflection points 

of EBMSY/EB0 and SBMSY/SB0 for each of the fixed steepness h input values. 
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Figure 4. Simulated ‘true’ trajectories of EB/EBMSY and SB/SBMSY relative to the estimated B/BMSY with 

associated 95% Confidence Intervals (CIs); and ‘true’ F/FMSY trajectories relative to estimated H/HMSY for the 

first 4 of 100 simulation runs (top to bottom), comparing the JABBA estimates from the EB-model (left) and SB-

model (right). 

 

Figure 5. Boxplots illustrating the relative errors calculated from 100 simulation replicates for JABBA estimates 

of B/BMSY compared to the ‘true’ SB/SBMSY and EB/EBMSY ,  H/HMSY estimates compare to the ‘true’ H/HMSY and 

MSY for the EB-model and SB-model. Median-Absolute-Relative-Error (MARE%) are displayed in each box. 
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Appendix A  

 

 

Age-structured dynamics 

 

 The age-structured simulation and estimation models were formulated building on the age-structured 

simulation-estimation framework employed in previous studies (Thorson and Cope, 2015). Numbers-at-age  a 

and year y, Na,y, are governed by: 

 

𝑁𝑎,𝑦 = {
𝑅𝑦                                           𝑓𝑜𝑟 𝑎 = 0

𝑁𝑎−1,𝑦−1𝑒−𝑠𝑎,𝑠−𝐹𝑦−1𝑀       𝑓𝑜𝑟 𝑎 > 0
    (A5) 

 

where Ry is recruitment in year y, sa,s is fishery selectivity at age under selectivity regime s, M is the 

instantaneous rate of natural mortality, and Fy in year y.   

Spawning biomass SBy is expressed as:    

 

𝑆𝐵𝑦 = ∑ 𝑤𝑎𝜓𝑎𝑁𝑎,𝑦𝑎                        (A6) 

 

where 𝑤𝑎 is the weight at age, 𝜓𝑎 is the proportion of mature fish in the population.  

 

Stochastic recruitment is introduced as a lognormally distributed random variable with the expected mean 

derived from the Beverton-Holt SSR function: 

 

ln(𝑅𝑡) ~𝑁𝑜𝑟𝑚𝑎𝑙 (𝑙𝑛 (
4ℎ𝑅0𝑆𝐵𝑦

𝑆𝐵0(1−ℎ)+𝑆𝐵𝑦(5ℎ−1)
) − 0.5𝜎𝑅

2, 𝜎𝑅
2)                       (A7) 

 

 

where R0 is the unfished average recruitment and 𝜎𝑅
2 is the variance is recruitment. 

   

To initiate the age structure in the first year of the available catch time series, it is assumed that the stock is in an 

unfished stated, so that Na,y=1 can be approximated by a stochastic age-structured as result of recruitment 

variation in previous years:  

 

ln(𝑁𝑎,𝑦=1) ~𝑁𝑜𝑟𝑚𝑎𝑙(ln (𝑅0𝑒−𝑎𝑀) − 0.5𝜎𝑅
2, 𝜎𝑅

2)                      (A8) 

 

Catch-at-age ca,t (in numbers) was calculated from the Baranov catch equation: 

 

𝑐𝑎,𝑦 = 𝑁𝑎,𝑦
𝑠𝑎,𝑠𝐹𝑦

𝑠𝑎𝐹𝑎+𝑀
(1 − 𝑒−𝑠𝑎,𝑆𝐹𝑦−𝑀)                                                 (A9) 

 

and total yield 𝐶𝑦 (in weight) in year y the summed product of catch at age and weight at age, such that: 

 

𝐶𝑦 = ∑ 𝑐𝑎,𝑦𝑤𝑎𝑎                                                         (A10) 

 

The abundance index Iy (CPUE) for year y was assumed to be proportional to the exploitable portion of the 

biomass (EBy) and associated with a lognormally distributed observation error 𝜀𝑦:  

 

log(𝐼𝑦) ~𝑁𝑜𝑟𝑚𝑎𝑙(ln(𝑞𝐸𝐵𝑦) , 𝜎𝜀
2)   (A11) 

 

where q is the catchability coefficient and EBy is a function of selectivity-at-age, such that: 

 

𝐸𝐵𝑦 = ∑ 𝑁𝑎,𝑦𝑤𝑎𝑠𝑎,𝑠𝑎  .    (A12) 

 


