Revised Chilean jack mackerel (*Trachurus murphyi*) fisheries relating to the South Pacific Regional Fishery Management Organisation
1. Overview .. 2
2. Taxonomy ... 5
 2.1 Phylum ... 5
 2.2 Class ... 5
 2.3 Order ... 5
 2.4 Family ... 5
 2.5 Genus and species ... 5
 2.6 Scientific synonyms .. 5
 2.7 Common names .. 5
 2.8 Molecular (DNA or biochemical) bar coding .. 5
3. Species characteristics ... 6
 3.1 Global distribution and depth range .. 6
 3.2 Distribution within South Pacific area ... 7
 3.2.1 Inter-annual and/or seasonal variations in distribution ... 8
 3.2.2 Other potential areas where the species may be found ... 9
 3.3 General habitat .. 9
 3.4 Biological characteristics .. 9
 3.5 Population structure .. 11
 3.6 Biological productivity .. 13
 3.7 Role of species in the ecosystem ... 13
4. Fisheries characterisation .. 14
 4.1 Distribution of fishing activity ... 14
 4.2 Fishing technology .. 14
 4.3 Catch history ... 14
 4.4 Stock status .. 16
 4.5 Threats ... 17
 4.6 Fishery value ... 21
5. Current Fishery Status and Trends .. 21
 5.1 Stock size ... 21
 5.2 Estimates of relevant biological reference points ... 22
 5.2.1 Fishing mortality .. 22
 5.2.2 Biomass ... 22
 5.2.3 Other relevant biological reference points .. 23
6. Impacts of Fishing .. 23
 6.1 Catch of associated and dependent species ... 23
 6.2 Unobserved mortality of associated and dependent species ... 23
 6.3 Bycatch of commercial species ... 23
 6.4 Habitat damage .. 24
 6.5 Trophic relationships .. 24
7. Management ... 24
 7.1 Existing management measures ... 24
 7.2 Fishery management implications ... 25
 7.3 Ecosystem Considerations ... 25
6.8 Research .. 26
 8.1 Current and ongoing research .. 26
 8.2 Research needs .. 27
9. Additional remarks ... 28
10. References .. 28
1. Overview

This carangid mackerel is widespread throughout the South Pacific, from the shelf adjacent to Ecuador, Peru, and Chile; throughout the oceanic waters along the Subtropical Convergence Zone; in the New Zealand EEZ south of about 34°S; and, in south-eastern waters of the Australian EEZ.

From mitochondrial DNA sequencing *Trachurus murphyi* has been identified as a distinct species (Poulin et al. 2004). Some earlier biological summaries have assumed synonymy with *T. symmetricus* and incorporated information from Californian studies of that species, which may therefore be misleading.

T. murphyi has become an important commercial species since 1980 following a substantial increase in its abundance, confirmed by assessments, in the early seventies in the east; a large scale westward expansion process into oceanic waters; and a subsequent invasion of New Zealand and Australian waters. Research has been extensive in some of these fisheries.

There have been a number of competing stock structure hypotheses, and up to four and more separate stocks have been suggested: a Chilean stock which is a straddling stock with respect to the high seas; a Peruvian stock which is also a straddling stock with the high seas; a central Pacific stock which exists solely in the high seas; and, a southwest Pacific stock which exists solely in the high seas, and, New Zealand – Australian stock which straddles the high seas and both the New Zealand and Australian EEZs. However, further Alternative working stock structure hypotheses for *T. murphyi* were developed at the Jack Mackerel Stock Structure and Assessment Workshop in Santiago in 2008 concerning the relationship between stocks of *T. murphyi* found in the area extending westwards from Chile out to about 120°W, and the relationship between Peruvian and Chilean stocks of *T. murphyi*. Further collaborative research is required to confirm and/or clarify this hypothesised stock structure and these hypotheses and provide a basis for effective management regimes.

Jack mackerel are predominantly caught by purse seine and midwater trawl.

Since the start of the fishery in 1950 the majority (~75%) of the global catch has been taken by Chilean vessels predominantly within its EEZ. During the period 1978-1991 the fleet of the former USSR took a catch of ~4013 million tonnes in the high seas area. Between 1994 and 2002, most of the Chilean catch of *T. murphyi* was taken within its EEZ, but in 2003 and 2004 32% and 28% was taken outside the EEZ. In 2004 the Chilean catch was ~363 000 tonnes from the high seas within the South Pacific region. In recent years Chile and other flags including Belize, China, Cook Islands, Faroe Islands, Netherlands EC, Republic of Korea, and Russia, Ukraine and Vanuatu have taken catches on the high seas in the South Pacific region. According to FAO data the total catch of *T. murphyi* reported to the SPRFMO interim secretariat for 2007 was around 1,723 million tonnes including 690,851 tonnes taken in high seas (303,042,2340 tonnes taken by distant water fishing nations). This total has varied between 1,5758 and 1,742 014 (comment: Peruvian and Ecuador catch was not included in billions tonnes since 2002 but the proportion taken by distant water fishing nations has increased from 4.4% in 2002 to 21.6% in 2007 and the proportion taken Chile in high seas varied from 3.3% (2002) to 25.6% (2003). The proportion taken Chile in high seas in 2007 was 13.2%. Other coastal states (Peru and Ecuador) didn’t catch beyond national EEZes. The proportion taken by...
distant water fishing nations has increased from 54.4% in 2002 to 1821.6% in 2007, and the proportion taken Chile in high seas increased from 3.3% in 2002 to 13.2% in 2007. Other coastal states (Peru and Ecuador) didn’t catch beyond national EEZs.

At the western extent of the species range the high seas catch is much smaller, with New Zealand catches of <1 tonne reaching a maximum of 25,331 t in 1995-96 but were 4,645 t in 2005-06. It is not currently possible to accurately quantify high seas catches as reporting is incomplete and those data that are reported do not separate between high seas and within EEZ catches.

The biology of *T. murphyi* is reasonably well known and biological productivity is believed to be medium, with first spawning at 20 – 25cm, moderate fecundity, fairly rapid growth and a maximum age of ~20 – 30 years (New Zealand estimation). Annual replacement yields are moderately high.

Currently, with the exception of Chilean vessels, there are no management measures in place for jack mackerel fisheries on the high seas (although all New Zealand and Australian flagged vessels that may take this species as an occasional bycatch are regulated by a high seas permitting regime). Due to the nature of the straddling Chilean stock, the same regulatory controls that apply within the Chilean EEZ also apply on the high seas. These controls include maximum catch limits per vessel owner and minimum size limits.

Although jack mackerel constitute a large resource, there have been concerns at a regional (assumed stock) level. For example, the Chilean straddling stock of *T. murphyi* is currently considered to be fully exploited. There is also an important ecological consideration related to potential over-harvesting of the jack mackerel resource. This relates to potential changes in predator-prey relationships. Jack mackerel constitute both a large predator pool, and a large prey resource, and probably fulfil an important role as a critical node in Pacific Ocean predator-prey networks. Experiences in other ecosystems have shown that substantial changes in the biomass of key species in the food web can lead to substantial and unpredictable responses in both their predators and their prey. Significant changes in predator-prey relationships are likely to cause shifts in food-web structure which are then not necessarily reversed by the reduction of fishing pressure.

For the Chilean (straddling) stock (under stock structure hypothesis 3), current Chilean stock assessment suggests in 2008 indicated that the stock is at full exploitation spawning biomass ratio had declined to just above 30% of unfished levels and given was still falling. Given the moderate productivity of this species, according Chilean stock assessment caution with respect to any increases in fishing mortality is needed. Peruvian assessments of the status of jack mackerel (under stock structure hypothesis 1) had indicated biomass levels of 8.6 million tonnes in 1993 and an annual yield of about 400,000 tonnes, but that this had fallen to a biomass of less than 2 million tonnes in 1998/99 with an annual catch less than 300,000 tonnes which shows the underexploited condition of the Peruvian stock (comment: taken from 6 SWG JM report, Canberra). Russian assessment results presented at the Stock Structure and Assessment Workshop According to the Russian assessment of the high seas biomass of jack mackerel (under stock structure hypothesis 4) in the south Pacific in the area of available international catch data is relatively stable with the average of about 7 million tonnes (comment: taken from 6 SWG JM report, Canberra).
For the other stocks given the absence of current information, it is not appropriate to provide detailed comment. However, given the moderate productivity of this species and the lack of information about current stock biomass levels, due caution is appropriate.

There has been a substantial amount of historical research on this species, particularly by Russia. However, substantially less research has been conducted over the past decade, except within the EEZs of a few coastal states and in high seas by Russia (2002-2003 and 2008).

Research is required to improve the understanding of the stock structure of *T. murphyi* to aid the development of appropriate management units, to obtain biomass estimates for stocks actively fished as inputs to stock assessment modelling, to undertake stock assessment for the fished stocks to provide robust fisheries management advice, and to evaluate bycatch levels, bycatch composition and levels of incidental catch of associated and dependent species in the active high seas fisheries to address issues associated with an ecosystem approach to fisheries management.

This profile is a living document. It is a draft report and requires additional information to complete.
2. **Taxonomy**

Shaboneyev (1980) summarises *Trachurus* to 12 species; the Integrated Taxonomic Information System (ITIS) at http://www.itis.usda.gov/index.html to 15 species. Three species exist in the South Pacific—*T. murphyi*, *T. declivis*, and *T. novaezelandiae*. The latter two species occur in the Western Pacific almost exclusively in coastal waters within EEZs.

2.1 **Phylum**

Chordata

2.2 **Class**

Osteichthyes/Actinopterygii

2.3 **Order**

Perciformes

2.4 **Family**

Carangidae

2.5 **Genus and species**

Trachurus murphyi (Nichols, 1920)

2.6 **Scientific synonyms**

Historically *Trachurus symmetricus murphyi*

2.7 **Common names**

Chilean jack mackerel (FAO, Chile, Russia), Murphy’s mackerel (New Zealand), Pacific jack mackerel (Russia), Peruvian jack mackerel (Australia, Russia), jack mackerel, horse mackerel, jurel (Chile, Peru, Ecuador).

2.8 **Molecular (DNA or biochemical) bar coding**

3. Species characteristics

3.1 Global distribution and depth range

The Chilean jack mackerel is distributed throughout the south eastern Pacific, both inside EEZs and on the high sea, ranging from the Galapagos Islands and south of Ecuador in the north to southern Chile; ranging from the South America in the east to Australia and New Zeland in the west. From south-central Chile it expanded across the Pacific Ocean along the West Wind Drift having reached New Zealand and Tasmanian waters in the early to mid-1980s (Evseenko 1987, Jones 1990, Serra 1991a, and Elizarov et al. 1993; Kotenev et al., 2006) (see Fig. 1).

Serra (1991a) summarised depths for aggregations of *T. murphyi*: Guzman et al. (1983) used hydroacoustic equipment to record the species down to 250 m off the coast of northern Chile; in central and southern Chilean waters, Bahamonde (1978) described it as occurring down to 300 m; and, Japanese trawlers have recorded it to depths of 300 m beyond the Chilean EEZ (Anon 1984, Anon 1985).

Cordova et al. (1998) described a diurnal migratory behaviour, with fish being found deeper during the day (50-180 m) than at night (10-40 m).
Figure 1. Distribution of Jack mackerel on the high seas in the South Pacific.

Note: Post SPREMO III this figure should be re-plotted with the distribution more tightly constrained to the 35 to 45ºS band.

3.2 Distribution within South Pacific area

Elizarov et al. (1993) coined the phrase “jack mackerel belt” to describe the distribution of *T. murphyi* across the South Pacific (Fig. 1). The jack mackerel belt is described as having a north-south breadth of “10 to 15 degrees” across “the southern sub region of the
southeast Pacific Ocean (SEPO) and southwest Pacific Ocean (SWPO), which varies with season as “spawning groups concentrate mainly in the north of 40ºS in spring and summer and south of 40ºS in autumn and winter to feed”.

Following the strong increase in its abundance from the early 1970s, *T. murphyi* expanded its distribution toward the west and crossed the Pacific Ocean along the West Wind Drift, reaching New Zealand waters in the early to mid-1980s (Bailey 1989, Serra 1991a, Elizarov et al. 1993, and Taylor 2002).

Changes in the distribution of *T. murphyi* off Peru have been reported over the period 1983-2007. These changes have corresponded to inter-decadal and inter-annual changes in environmental conditions (Ñiquen, and Peña 2008) and particularly those due to a strong El Nino event in 1997-98 (Gutiérrez et al. 2008). These changes have produced shifts in the distribution of catches from between 3 and 14º S (1996-2001) to between 10 and 18º S (2002-2007) and have been attributed to a combination of changed environmental conditions and changed food availability (Espinoza et al. 2008, Gutiérrez et al. 2008).

Acoustic surveys off the central coast of Chile since 1991 have found that since 2003 there have been important changes in the distribution of main biomass of *T. murphyi* which has become more distant from the coast. (Cordova et al. 2008)

Off New Zealand, catches of *T. murphyi* initially appeared around the Chatham Islands in 1984-85, showed a westward expansion from 1986-87 to 1994-95 as catches increased, and then contracted eastward to 2006-07 as catches declined (Penney and Taylor 2008).

Jack mackerel are also found within the Australian, New Zealand, Chilean, Peruvian and Equadorian EEZs.

3.2.1 Inter-annual and/or seasonal variations in distribution

A large increase in abundance over the 20 years to 1991 has been reported (Serra 1991a and b, Elizarov et al. 1993), which is considered to be the cause of its large present distribution. Serra (1991a) also described a seasonal migration between coastal and oceanic waters for the Chilean subpopulation, and related this to “reproductive and trophic processes”, stating “this migration forms a pattern which determines the seasonal availability of the resource in the coastal and oceanic fisheries and establishes an important factor for stock assessment.” In Chilean fisheries waters, large jack mackerel tend to be distributed toward the south. A similar tendency for larger fish in southern waters is also seen in New Zealand fisheries waters (Taylor in prep.).

Russian researchers detected several geographically isolated groupings of jack mackerel within the species belt; these groupings were attached to zones having stable hydrological conditions. Each one makes circular seasonal migrations (Chur et al., 1984; Kashirin, Melnik, 1984; Vasilieva et al., 1984; Rudometkina et al., 1988; Elizarov et al., 1992; Kotenev, 1992; Kotenev et al., 2006; Soldat et al., 2008).

In oceanic waters, beyond 120ºW, Elizarov et al. (1993) described a migratory pattern whereby jack mackerel move from productive, cold southern waters,
northward into subtropical waters where they spawn, and then return. Young of the year of the Chilean stock moved eastwards, arriving on the shelf and beginning to recruit into the fishery at age 2.

3.2.2 Other potential areas where the species may be found

None likely based on the species biology and the oceanography of the area.

3.3 General habitat

T. murphyi is a schooling pelagic species adapted to both neritic and oceanic environments.

Areas of abundance of *T. murphyi* are considered to be associated with areas of high productivity from upwelling of cooler, nutrient-rich waters (Niquen and Peña 2008, Chernyshkov et al. 2008). However, an El Niño event that produced cold coastal waters over an extended area off Peru has also been associated with a reduction in *T. murphyi* abundance (Gutiérrez et al. 2008).

An analysis of long-term average geostrophic circulation patterns in the upper 200 m layer of water identified relatively isolated areas of anticyclonic circulation in the eastern, central and western parts of the southern Pacific Ocean. All life history stages of *T. murphyi* were reported from within these zones which were considered to be areas of high biological productivity (Chernyshkov et al. 2008).

3.4 Biological characteristics

Morphology: body elongate and slightly compressed. Enlarged, scute-like scales on primary lateral line. Termination of dorsal accessory lateral line below 2nd to 5th soft ray of dorsal fin. Pectoral fin tip extending to be above the two detached spines anterior to the anal fin. Eye moderate size with well-developed adipose eyelid. Posterior margin of upper jaw below anterior margin of eye. Jaws vomer, *palatine*, palatine, and tongue bearing minute teeth (Kawahara et al. 1988).

Colour when fresh: dark blue dorsal body, silver-white ventrally; upper posterior margin of opercula bear a black spot; pale pelvic fins; caudal, pectoral, and dorsal fins dusky; anal fin pale *anteriorly in the front*, dusky *posteriorly in the rear*.
Several authors have described *T. murphyi* to be an indeterminate batch spawner, based on histological studies and on the oocyte-size-frequency-distribution (OSFD) of reproductively active females, and their “presence over a long temporal extension of seven to nine months per year” (Dioses et al. 1989, George 1995, and Oyarzún et al. 1998). This conclusion is supported by evidence from Evseenko (1987) and Bailey (1989) who state that *T. murphyi* spawns wherever environmental conditions are suitable. The suitable environmental conditions seems to be water warmer than 15 °C, with highest densities having been found in waters of 16 – 19 °C, and low current (less than 15 cm.s⁻¹) (Evseenko 1987, Nuñez et al. 2004).

Trachurus murphyi spawns in spring and summer, with the main spawning season from October to December (Serra 1983 and 1991a, Elizarov et al. 1993, and Oyarzún et al. 1998). It spawns throughout its distribution, but the main spawning ground of the Chilean subpopulation is off central Chile in coastal waters and extending beyond 200 miles of the EEZ to about 93° W (Serra 1991b, Nuñez et al. 2004, and Arcos et al. 2005). An additional area of spawning has been recorded in the area between 105°E and 125°E (Kotenev et al. 2006).

Trachurus murphyi also spawns. The results of 85 seasonal surveys of eggs and larvae between 1981 and 2007 off northern Chile (north of 24° S) found that egg and larva density peaked in winter-spring, with a greater concentration towards the southern part of this area (Braun and Valenzuela 2008).

Annual surveys of the distribution of early developmental stages of *T. murphyi* between 1999 and 2007, in waters off central Chile, found that most spawning was centred between 33 and 38° S and from 82 to 92° W (Nuñez et al. 2008). Higher densities of eggs and larvae were associated with water temperatures of 16-18°, moderate winds (4-8 m s⁻¹), a low turbulence index (< 100 m⁻³ s⁻³), and slower current speeds (< 15 cm s⁻¹) (Nuñez et al. 2008). This supports the view that spawning occurs along the subtropical convergence, between the southern and northern limits (42 °S and 36 °S). The western centre of the spawning occurs within 130 °W to 155 °W and 35 °S to 40 °S (Evseenko 1987, Elizarov et al. 1993).

According to Oyarzún and Gacitúa (2002) and Oliva et al. (1995), 10–15% of females spawn each day during the period of most intensive spawning, meaning that the average female spawns every 7–10 days at this time.

First spawning has been described at 25 cm fork length (FL) by Abramov & Kotlyar (1980); 23 cm total length (equal to 21 cm FL) by Dioses et al. (1989), based on histological examination of ovaries; 22 cm (Marcelo Oliva Morena, Instituto de Investigaciones Oceanológicas, Universidad de Antofagasta, Chile, pers. comm.); and 23 cm FL (Basten & Contreras 1978). In Chile the mean length of first spawning is considered to be 25 cm FL, but the size at first maturity has been reported to vary between 21.6 and 30 cm FL among different areas (Cubillos et al. 2008).

Several papers have been published describing *T. murphyi* growth functions. Cubillos et al. (1998) summarised 22 studies. *T. murphyi* can be described as having a moderate growth rate. In Chile the ages are estimated using transversely sectioned otoliths. The

10
maximum recorded age is 19 years, which contrasts strongly with the maximum age of 32 years estimated in New Zealand. Some of the difference in these estimates can be explained by New Zealand specimens being larger, and therefore older, than those taken in Chile, as would be expected for an animal near the extreme of its range. However, some of the difference may be the result of differing ageing methodologies used in the two countries—counts of whole otoliths are used in Chile, whereas counts from embedded, sectioned otoliths are used in New Zealand.

The method used to estimate ages for *T. murphyi* in Chile have been validated using the bomb radiocarbon method (Ojeda et al. 2008).

Kochkin (1994) sampled specimens from both the South West Pacific Ocean (SWPO) and the South East Pacific Ocean (SEPO) between 1983 and 1990 and investigated growth using otoliths and length frequencies. His estimated von Bertalanffy relationship was $L_t = 74.2405[1 − e^{-0.1109(t + 0.8113)}]$, and he determined L_{max} to be 0.943L_{∞}.

Gili et al. (1996) investigated growth using otoliths sampled from the central Chile fishery. Their estimates of growth parameters were: $K=0.094$; $L_{\infty}=70.8$ cm FL; and $t_0=-0.896$.

Natural mortality has been estimated to be in the range of 0.30 to 0.22 y^{-1} based on size composition data (Cubillos et al. 2008). The Chilean assessment model uses a value of 0.23 y^{-1} for all age groups (Canales and Serra, 2008 unpublished report).

3.5 Population structure

There have been a number of competing stock structure hypotheses, and up to four separate stocks have been suggested: a Chilean stock which is a straddling stock with respect to the high seas; a Peruvian stock which is also a straddling stock with the high seas; a central Pacific stock which exists solely in the high seas; and, a southwest Pacific stock which exists solely in the high seas and both the New Zealand and Australian EEZs.

Alternative working stock structure hypotheses for *T. murphyi* were developed at the Jack Mackerel Stock Structure and Assessment Workshop in Santiago in 2008. These hypotheses were based on information presented at this workshop or previously published. The report of this workshop contains a summary of the evidence supporting or opposing these hypotheses.

Hypotheses concerning the relationship between Peruvian and Chilean stocks of *T. murphyi*:

Hypothesis 1: Jack mackerel caught off the coasts of Perú and Chile each constitute separate stocks which straddle the high seas.

This is the current hypothesis expressed in the Jack Mackerel Species Profile and used in past stock assessments. There is a fairly substantial amount of historic and current evidence supporting this hypothesis.
Additional work is required to determine the most likely boundary between separate Peruvian and Chilean stocks. For the purposes of *T. murphyi* assessments to be conducted in the immediate future, separation at the Peruvian / Chilean border would be a reasonable and convenient assumption to use under this stock hypothesis, until further information becomes available to improve the definition of stock boundaries.

Hypothesis 2: **Jack mackerel caught off the coasts of Perú and Chile constitute a single shared stock which straddles the high seas.**

With regard to hypotheses regarding Peruvian / Chilean jack mackerel stock structure, the Workshop noted a number of other alternatives or possibilities which should specifically be investigated under the proposed Jack Mackerel Stock Structure Research Programme. These included some degree of inter-dependence or relationship between separate Peruvian and Chilean stocks resulting from regular distribution shifts and mixing in the southern Perú / northern Chile area.

Hypotheses concerning the relationship between stocks of *T. murphyi* found in the area extending westwards from Chile out to about 120°W:

Hypothesis 3: **Jack mackerel caught off the Chilean area constitute a single straddling stock extending from the coast out to about 120°W.**

This is the hypotheses currently used in Chilean stock assessments. There is a fairly substantial amount of evidence supporting this hypothesis.

However, there is little information upon which to base a reliable definition of the westward boundary of such a stock, and additional work is required to determine the most likely westward boundary of a straddling Chilean stock.

For the purposes of *T. murphyi* assessments to be conducted in the immediate future, the westward boundary of this stock could be assumed to be about 120°W, to cover all areas currently fished in the southeast Pacific Ocean, until further information becomes available to improve the definition of this boundary.

Hypothesis 4: **Jack mackerel caught off the Chilean area constitute separate straddling and high seas stocks.**

Little information is available upon which to base a reliable definition of the boundary between such stocks. Additional work is required to determine the most likely position of such a boundary.

Further collaborative research is required to confirm and/or clarify this hypothesised stock structure as these hypotheses and provide a basis for effective management regimes.
In South America there is evidence for at least two stocks based on results of genetic studies (Koval 1996), generalised studies using distribution, abundance, size composition, and reproductive distributions (Evseenko 1987, Serra 1991b) and parasite studies (Oliva 1999), which have been referred to as the Peruvian and Chilean stocks. There is also evidence for a stock in the central South Pacific Ocean based on reproductive distributions, morphological and parasite information (Evseenko 1987, Duran & Oliva 1983, Romero & Kuroki 1985, Storozhuk et al. 1987, Kalchugin 1992, and Avdeyev 1992). There is also some evidence for a stock in the Southwest Pacific Ocean based on morphological (Kalchugin 1992) and parasite information (Duran & Oliva 1983, Romero & Kuroki 1985, and Avdeyev 1992).

A large population of *T. murphyi* has existed in New Zealand waters following its initial expansion into the region sometime during the early to mid 1980s. According to Taylor (2002), New Zealand waters appear to be conducive to establishment of a self-sustaining stock. The widespread distribution of prey species in New Zealand waters and the highly adaptable feeding strategy of *T. murphyi* suggest that food is not limiting and the reproductive condition of specimens sampled in New Zealand indicates a wide geographic range of fish in maturing and in spawning condition. However, few juvenile specimens have been taken during the approximately 25 years that *T. murphyi* has been present in New Zealand waters and recent monitoring shows that this species is now less abundant at the surface than during the mid 1990s (Taylor in prep).

However, the degree of independence of this stock from the South East Pacific Ocean stocks remains an open question. Alternative stock structure hypotheses require further investigation.

3.6 Biological productivity

The biology of *T. murphyi* is reasonably well known. Biological productivity is believed to be medium, with first spawning at 20 – 25cm, moderate fecundity, fairly rapid growth and a maximum age of ~20-30 years. Annual replacement yields are moderately high.

3.7 Role of species in the ecosystem

This species is a generalist feeder capable of utilising a wide range of prey species (Konchina 1979). It undoubtedly plays a role occupying the “specialist” niche in wasp-waist systems (Cury et al. 2000), acting as a conduit of energy flow between the primary producers and the higher generalists and predators. However, its wide range of prey species shows that it is not restricted to this role. As the “bloom” event in the early to mid 1990s indicated (4.4 M t were taken in the Chilean fishery in 1995) (Table 1), which coincided with a peak in aerial sightings records in New Zealand waters (P.R. Taylor, NIWA, New Zealand, unpublished data), population size of *T. murphyi* can be extremely high. Little is known about its predators, though Bailey (1987) tentatively identified juvenile jack mackerel from the stomachs of albacore tuna (*Thunnus alalunga*) taken in the central South Pacific (36°S to 42°S and 148°W to 165°W) as *T. murphyi*. It has also been found in the stomach contents of swordfish off the Chilean coast (M. Donoso, IFOP, Chile, pers. comm.). Generally it can be expected that its
predators will be similar to those of other carangid mackerels and will include tunas, billfish, and sharks. As a consequence of the large size of the jack mackerel resource and its important role as both predator and prey, the species is likely to be an important node in Pacific Ocean predator-prey networks. Depletion of the jack mackerel resource would likely cause unpredictable, substantial and enduring changes in the abundances of its predators and prey, which may not be easily reversible by reduction of fishing mortality.

4. Fisheries characterisation

4.1 Distribution of fishing activity

Four fisheries can be identified off the Chilean coast. The first is in northern Chile, from the boundary with Peru to 24° S. A second fishery operates from 24° S to 32° S. The main fishery is located off central Chile, from 32° S to about 43° S within and outside the EEZ. In the two first fisheries the target species are small pelagic fish with jack mackerel as secondary target species. From 1978 to 1992 an international fishery operated on the high seas of the proposed SPRFMO area. The main fleet was from the former USSR, but vessels from Cuba and the German Democratic Republic also fished. Since 2002 some Chinese vessels from other flags have fished in this area. Since 2003 three Korean vessels have fished in the area, and more recently also one Dutch vessel.

4.2 Fishing technology

T. murphyi is caught mainly by purse seine and midwater trawl net. In Chile, it is targeted extensively by domestic purse-seine vessels. In the northern Chilean fishery a Marco type of purse seiner is used, while in the fishery off central Chile purse seiners with their fishing gear at the deck level are used, similar to the Scandinavian design. The international fleet was historically composed mainly of large Russian midwater trawlers.

In 2004 to 2008, the size of the purse seine fishing fleet in northern Chile was about 8471 vessels, with an average size of 370 cubic metre of hold capacity, while the size of the fishing fleet in the central Chilean fishery was 5650 vessels with an average hold capacity of 1105 cubic metre and an average length of 55 metres.

4.3 Catch history

The majority of the total global catch comes from FAO area 87, the Southeast Pacific (Table 2).

Since the start of the fishery in 1950 the majority (~75%) of the global catch has been taken by Chilean vessels predominantly within its EEZ. From 1950 to 1994 over 54 million tonnes of jack mackerel were taken by Chile. The Chilean fishery for *T. murphyi* peaked at around 4.5 M t. in 1995. Between 1994 and 2001, almost 100% of the Chilean catch of *T. murphyi* was taken within the EEZ, but from 2002 onward an important
fraction has been taken outside the EEZ. During the period 1978-1991 the fleet of the former USSR took a catch of ~13 million tonnes in the high seas area. According FAO data the total catch of T. murphyi for 2007 was around 1.99 million tonnes including 690,851 tonnes taken in high seas (428,234 tonnes taken by distant water fishing nations). This total has varied between 1.75 and 2.04 (comment: Peruvian and Ecuadorian catches were not included). million tonnes since 2002. The total catch of T. murphyi reported to the SPremo interim secretariat for 2007 was around 1.75 million tonnes including 315,000 tonnes taken by distant-water fishing nations. This total has varied between 1.57 and 1.74 million tonnes since 2002 but the proportion taken by distant water fishing nations has increased from 5% in 2002 to 18% in 2007.

The high seas in the South Pacific were fished by vessels of the former USSR from 1978 to 1991. This activity remained high in the 1980s with a maximum catch of 900,000 tonnes beyond the EEZ off central Chile, and 1.1 M tonnes off the South American coast. Fishing activity stopped suddenly in 1992. In total over 13 million tonnes of jack mackerel were taken by the former USSR in the South Pacific during 1978-1991.

Chile’s jack mackerel catches far exceed other countries catch taking 75% of the world’s reported catch. From 1950 to 1994 over 54 million tonnes of jack mackerel were taken by Chile. The Chilean fishery for T. murphyi peaked at around 4.5 M t. in 1995. Present total catch is around 1.5 M tonnes including 130,000 tonnes taken by a Chinese fleet on the high seas off central Chile. Between 1994 and 2002, almost 100% of the Chilean catch of T. murphyi was taken within the EEZ (Table 1), but in 2003 and 2004 the proportion dropped considerably, with 32% and 28% onward an important fraction has been taken outside the EEZ. In recent years Chile and other flags including Belize, China, Cook Islands, Faroe Islands, EC, Republic of Korea, Russia, Ukraine and Vanuatu have taken catches on the high seas in the South Pacific region. The proportion taken by distant water fishing nations has increased from 4.4% in 2002 to 21.6% in 2007 and the proportion taken Chile in high seas varied from 3.3% (2002) to 25.6% (2003). The proportion taken Chile in high seas in 2007 was 13.2%. Other coastal states (Peru and Ecuador) didn’t catch beyond national EEZes.

The Peruvian fishery is an order of magnitude smaller than the Chilean fishery, peaking at almost 800,000 tonnes in 2001, but declining to a variable fishery averaging about 100,000 tonnes between 2002 and 2004.

In New Zealand, T. murphyi forms part of the jack mackerel catch, which also includes T. declivis and T. novaecelandiae, and totals about 25,000 t per annum. The estimated catch of T. murphyi reached a maximum catch of 25,331 t in 1995-96 before declining to 2,401 t in 2002-03 then rising to 4,643 t in 2005-06. The majority of New Zealand’s jack mackerel is caught within the EEZ.

A Dutch vessel fishing on the high seas in 2006 had reported provisional landings up to the end of August in FAO area 87 of approximately 21,000 t of T. murphyi.

Note: A table describing high seas catch in Area 87 would be useful here also.

<table>
<thead>
<tr>
<th>Year</th>
<th>Chile</th>
</tr>
</thead>
<tbody>
<tr>
<td>1994</td>
<td>0.65</td>
</tr>
</tbody>
</table>

Table 1: Percentage of Chilean jack mackerel catch in FAO Area 87 taken outside its EEZ and inside the proposed SPremo area by year, 1994-2004.
Stock status

Chilean stock

There has only been one Chilean assessment conducted to date for the status of jack mackerel. This, using a statistical catch-at-age model based on a Bayesian estimate approach, covered the area from the northern Chilean border to 45° S within the EEZ, and out 105°W between 35° S and 45°S. In terms of this initial assessment (Serra et al., 2006 unpublished report), the spawning biomass in this area was estimated to be 5,500,000t, with a confidence interval 2,000,000t – 8,900,000t in 2005. This represented a spawning biomass ratio of just under 40% of unfished levels and the stock was assessed as being fully exploited. An update of the Chilean assessment of the status of jack mackerel in March 2008 (Canales and Serra, 2008 unpublished report) indicated that the spawning biomass ratio had declined to just above 30% of unfished levels and was still falling. This assessment incorporated catches by distant water fishing nations out to 120°W since 2001 including catches of 315,000 tonnes by such nations in 2007.

The Chilean straddling stock is currently considered to be fully exploited (Serra et al., 2006).

Other stocks

Peruvian assessments of the status of jack mackerel (under stock structure hypothesis 1) had indicated biomass levels of 8.6 million tonnes in 1993 and an annual yield of about 400,000 tonnes, but that this had fallen to a biomass of less than 2 million tonnes in 1998/99 with an annual catch less than 300,000 tonnes which shows the underexploited condition of the Peruvian stock (comment: taken from 6 SWG JM report, Canberra).

According to the Russian assessment (TISVPA) of the high seas biomass of jack mackerel (under stock structure hypothesis 4) in the south Pacific in the area of available international catch data is relatively stable (Vasiliev et al., 2008).

A preliminary assessment of the current state of *T. murphyi* stocks in the high seas of the south-east Pacific has been undertaken using an instantaneous separable virtual population analysis (ISVPA) model (Vasilyev et al., 2008). This estimated the assessed stock to be relatively stable.
There have been no other assessments conducted on jack mackerel in the high seas proposed convention area and the current status of the other stocks is unknown.

4.5 Threats

Not listed by the IUCN.
Table 1: Reported catches (t) of Chilean jack mackerel by country for FAO area 87 from 1950 to 2006.

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Chile</td>
<td>1 000</td>
<td>700</td>
<td>1 300</td>
<td>1 900</td>
<td>2 000</td>
<td>1 200</td>
<td>1 400</td>
<td>4 700</td>
<td>5 600</td>
<td>11 200</td>
</tr>
<tr>
<td>Peru</td>
<td>0</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>700</td>
<td>400</td>
<td>200</td>
<td>400</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>South Pacific Region Total</td>
<td>1 000</td>
<td>800</td>
<td>1 400</td>
<td>2 100</td>
<td>5 100</td>
<td>5 800</td>
<td>11 600</td>
<td>6 500</td>
<td>5 800</td>
<td>11 600</td>
</tr>
<tr>
<td>Outside South Pacific Total</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Grand Total</td>
<td>1 000</td>
<td>800</td>
<td>1 400</td>
<td>2 000</td>
<td>2 100</td>
<td>1 300</td>
<td>2 100</td>
<td>5 100</td>
<td>5 800</td>
<td>11 600</td>
</tr>
<tr>
<td>Chile</td>
<td>6 200</td>
<td>5 400</td>
<td>9 000</td>
<td>8 700</td>
<td>10 300</td>
<td>12 700</td>
<td>17 600</td>
<td>26 400</td>
<td>23 800</td>
<td>16 600</td>
</tr>
<tr>
<td>Peru</td>
<td>300</td>
<td>200</td>
<td>700</td>
<td>200</td>
<td>1 700</td>
<td>2 600</td>
<td>4 300</td>
<td>3 100</td>
<td>2 800</td>
<td>4 200</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>South Pacific Region Total</td>
<td>6 500</td>
<td>5 600</td>
<td>9 700</td>
<td>8 900</td>
<td>12 000</td>
<td>15 300</td>
<td>21 900</td>
<td>29 500</td>
<td>26 600</td>
<td>20 800</td>
</tr>
<tr>
<td>Outside South Pacific Total</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Grand Total</td>
<td>6 500</td>
<td>5 600</td>
<td>9 700</td>
<td>8 900</td>
<td>12 000</td>
<td>15 300</td>
<td>21 900</td>
<td>29 500</td>
<td>26 600</td>
<td>20 800</td>
</tr>
<tr>
<td>Bulgaria</td>
<td></td>
</tr>
<tr>
<td>Chile</td>
<td>104 000</td>
<td>149 900</td>
<td>86 000</td>
<td>121 600</td>
<td>193 512</td>
<td>261 205</td>
<td>342 269</td>
<td>340 806</td>
<td>586 681</td>
<td>597 511</td>
</tr>
<tr>
<td>Cuba</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>100</td>
<td></td>
<td></td>
<td>800</td>
<td>900</td>
<td>1 000</td>
</tr>
<tr>
<td>Japan</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>35</td>
<td>2 273</td>
<td>1 667</td>
</tr>
<tr>
<td>Korea, Republic of</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>819</td>
</tr>
<tr>
<td>Peru</td>
<td></td>
</tr>
<tr>
<td>Poland</td>
<td>4 700</td>
<td>9 200</td>
<td>18 800</td>
<td>42 800</td>
<td>129 211</td>
<td>37 899</td>
<td>54 154</td>
<td>504 992</td>
<td>386 793</td>
<td>151 591</td>
</tr>
<tr>
<td>Un. Soc. Sov. Rep.</td>
<td>5 500</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>49 220</td>
<td>532 209</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>South Pacific Region Total</td>
<td>108 700</td>
<td>159 100</td>
<td>110 300</td>
<td>164 500</td>
<td>322 723</td>
<td>299 904</td>
<td>397 358</td>
<td>848 071</td>
<td>1 026 180</td>
<td>1 306 337</td>
</tr>
<tr>
<td>Outside South Pacific Total</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Grand Total</td>
<td>159 100</td>
<td>110 300</td>
<td>164 500</td>
<td>322 723</td>
<td>299 904</td>
<td>397 358</td>
<td>848 071</td>
<td>1 026 180</td>
<td>1 306 337</td>
<td></td>
</tr>
</tbody>
</table>
Table 1 (cont.):

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Bulgaria</td>
<td>15 065</td>
<td>12 629</td>
<td>13 561</td>
<td>24 324</td>
<td>14 694</td>
<td>2 290</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Chile</td>
<td>562 262</td>
<td>1 060 909</td>
<td>1 494 683</td>
<td>865 272</td>
<td>1 426 301</td>
<td>1 456 989</td>
<td>1 184 317</td>
<td>1 770 037</td>
<td>2 138 255</td>
<td>2 390 117</td>
</tr>
<tr>
<td>Cuba</td>
<td>83 971</td>
<td>74 227</td>
<td>83 881</td>
<td>54 875</td>
<td>34 008</td>
<td>32 258</td>
<td>46 833</td>
<td>35 980</td>
<td>44 209</td>
<td>24 486</td>
</tr>
<tr>
<td>Ecuador</td>
<td>-</td>
<td>-</td>
<td>24 937</td>
<td>10 000</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2 312</td>
</tr>
<tr>
<td>Estonia</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>82 590</td>
<td>77 351</td>
</tr>
<tr>
<td>Georgia</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>23 134</td>
<td>26 358</td>
</tr>
<tr>
<td>Germany</td>
<td>1 031</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Japan</td>
<td>-</td>
<td>29</td>
<td>-</td>
<td>1 694</td>
<td>3 871</td>
<td>5 229</td>
<td>6 835</td>
<td>8 815</td>
<td>6 871</td>
<td>701</td>
</tr>
<tr>
<td>Korea, Rep.</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>62</td>
<td>641</td>
<td>-</td>
<td>2 018</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Latvia</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>128 966</td>
<td>128 692</td>
</tr>
<tr>
<td>Lithuania</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>75 122</td>
<td>102 980</td>
<td></td>
</tr>
<tr>
<td>Peru</td>
<td>123 380</td>
<td>37 875</td>
<td>50 013</td>
<td>76 825</td>
<td>184 333</td>
<td>87 466</td>
<td>49 863</td>
<td>46 304</td>
<td>118 076</td>
<td>140 720</td>
</tr>
<tr>
<td>Poland</td>
<td>528</td>
<td>-</td>
<td>7 136</td>
<td>39 943</td>
<td>80 129</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Russian Fed.</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>496 214</td>
<td>662 626</td>
<td></td>
</tr>
<tr>
<td>Ukraine</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>130 262</td>
<td>98 285</td>
<td></td>
</tr>
<tr>
<td>Un. Sov.</td>
<td>494 402</td>
<td>554 646</td>
<td>555 367</td>
<td>591 005</td>
<td>570 612</td>
<td>563 968</td>
<td>673 049</td>
<td>818 628</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>South Pacific</td>
<td></td>
</tr>
<tr>
<td>Region Total</td>
<td>1 280 639</td>
<td>1 740 315</td>
<td>2 204 641</td>
<td>1 678 875</td>
<td>2 324 010</td>
<td>2 148 841</td>
<td>1 960 897</td>
<td>2 681 782</td>
<td>3 245 699</td>
<td>3 654 628</td>
</tr>
<tr>
<td>Outside</td>
<td></td>
</tr>
<tr>
<td>South Pacific</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>1 280 639</td>
<td>1 740 315</td>
<td>2 204 641</td>
<td>1 678 875</td>
<td>2 324 010</td>
<td>2 148 841</td>
<td>1 960 897</td>
<td>2 681 782</td>
<td>3 245 699</td>
<td>3 654 628</td>
</tr>
</tbody>
</table>
Table 1 (cont.):

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Bulgaria</td>
<td>1 649</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1 219 689</td>
</tr>
<tr>
<td>Chile</td>
<td>2 471 875</td>
<td>3 020 512</td>
<td>3 212 060</td>
<td>3 236 244</td>
<td>4 041 447</td>
<td>4 404 193</td>
<td>3 883 326</td>
<td>2 917 064</td>
<td>1 612 912</td>
<td>1 219 689</td>
</tr>
<tr>
<td>Cuba</td>
<td>41 197</td>
<td>30 828</td>
<td>3 196</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Ecuador</td>
<td>138</td>
<td>23 123</td>
<td>22 818</td>
<td>9 946</td>
<td>23 723</td>
<td>174 393</td>
<td>56 781</td>
<td>30 302</td>
<td>25 900</td>
<td>19 072</td>
</tr>
<tr>
<td>Estonia</td>
<td>78 627</td>
<td>60 318</td>
<td>376</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Georgia</td>
<td>36 130</td>
<td>12 181</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Japan</td>
<td>157</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Latvia</td>
<td>113 221</td>
<td>83 719</td>
<td>2 298</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>7</td>
</tr>
<tr>
<td>Lithuania</td>
<td>80 874</td>
<td>109 292</td>
<td>7 842</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Peru</td>
<td>191 139</td>
<td>136 337</td>
<td>96 660</td>
<td>130 681</td>
<td>196 771</td>
<td>376 600</td>
<td>438 736</td>
<td>649 751</td>
<td>386 946</td>
<td>184 679</td>
</tr>
<tr>
<td>Russia Fed.</td>
<td>688 551</td>
<td>419 650</td>
<td>31 357</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Ukraine</td>
<td>124 894</td>
<td>57 788</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>South Pacific Region Total</td>
<td>3 828 452</td>
<td>3 953 748</td>
<td>3 376 607</td>
<td>3 376 871</td>
<td>4 261 941</td>
<td>4 955 186</td>
<td>4 378 843</td>
<td>3 597 117</td>
<td>2 025 758</td>
<td>1 423 447</td>
</tr>
<tr>
<td>Grand Total</td>
<td>3 828 452</td>
<td>3 953 748</td>
<td>3 376 607</td>
<td>3 376 871</td>
<td>4 261 941</td>
<td>4 955 186</td>
<td>4 378 843</td>
<td>3 597 117</td>
<td>2 025 758</td>
<td>1 423 447</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Country</th>
<th>2000</th>
<th>2001</th>
<th>2002</th>
<th>2003</th>
<th>2004</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chile</td>
<td>1 234 299</td>
<td>1 649 933</td>
<td>1 518 994</td>
<td>1 421 296</td>
<td>1 451 599</td>
</tr>
<tr>
<td>China</td>
<td>-</td>
<td>-</td>
<td>76 261</td>
<td>94 690</td>
<td>131 020</td>
</tr>
<tr>
<td>Ecuador</td>
<td>7 144</td>
<td>134 011</td>
<td>604</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Ghana</td>
<td>2 472</td>
<td>1 157</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Korea, Rep. of</td>
<td>-</td>
<td>-</td>
<td>2 196</td>
<td>9 227</td>
<td>-</td>
</tr>
<tr>
<td>Peru</td>
<td>296 579</td>
<td>723 733</td>
<td>154 219</td>
<td>217 734</td>
<td>186 931</td>
</tr>
<tr>
<td>Russian Fed.</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>132</td>
<td>-</td>
</tr>
<tr>
<td>South Pacific Region Total</td>
<td>1 540 494</td>
<td>2 508 834</td>
<td>1 750 078</td>
<td>1 736 048</td>
<td>1 778 777</td>
</tr>
<tr>
<td>Grand Total</td>
<td>1 540 494</td>
<td>2 508 834</td>
<td>1 750 078</td>
<td>1 736 048</td>
<td>1 778 777</td>
</tr>
</tbody>
</table>

Source: FAO Database 2006
4.6 Fishery value

In determining fishery value, three key types of jack mackerel products are considered: products for human consumption; fishmeal production from reduction fishing; and fishmeal production from the processing waste stream.

In Chile, the industry, that uses jack mackerel as raw material, generated revenues of US$164.9 million from export for human consumption and US$264.4 million from fishmeal during 2005. Overall prices average US$655.9 per tonne for fishmeal and US$733.6 per tonne for the human consumption products.

The majority of New Zealand’s small high seas catch is landed as fishmeal. The average FOB1 return for fishmeal not suitable for human consumption for the last 12 months was NZ$1.25/kg. Total revenue from New Zealand jack mackerel exports in 2005 was NZ$30 694 218 (5.8% of total exports), however, this mainly comprised of catch from within the EEZ (New Zealand Seafood Exports Report 5A, 2005).

5. Current Fishery Status and Trends

5.1 Stock size

Historic estimates of biomass for various parts of the South Pacific

Using virtual population analysis estimates for mixed stocks, it was determined that in the 5–7 years before 1993, the biomass of *T. murphyi* remained stable, varying from 12–22 M t in total: 1.3–2.4 M t in the northern SEPO (north of 30ºS of the South East Pacific Ocean), 10–14 M t in the southern SEPO (south of 30ºS) and eastern part of the SWPO, and 6–8 M t in the central and western SWPO (Elizarov et al.,1993). An acoustic / trawl survey in the SWPO (105 – 165ºW) in 1987 was used to estimate total biomass in this region as 8 M t (Nazarov & Nesterov 1990). Depending on the proportion of acoustic signal assumed to be plankton (about 50 M t), biomass of *T. murphyi* was estimated to be about 5–7 M t (Vinogradov et al. 1991). An acoustic / trawl survey in the SEPO (beyond Chilean EEZ to 105ºW, area 362 ths sq.miles) in 2002-2003 was used to estimate total biomass in this region as 7,635 M t (Nesterov et al., 2004).

Chilean stock

The biomass of the Chilean stock of *T. murphyi* has been estimated with statistical catch-at-age models (Serra et al. 2005), hydroacoustic methods (Cordova et al., 2004) and the daily egg production method (Arcos et al., 2005).

Serra (1983 and 1991b) and Serra et al. (2005) described the increase in abundance of the Chilean jack mackerel subpopulation since the early seventies. Associated with this increase, the population expanded its distribution, crossing the South Pacific Ocean along the West Wind Drift (Serra, 1991a; Elizarov et al. 1993). The Chilean stock attained a

1 Unit value is calculated by dividing the FOB value in NZS by the weight in kg. (FOB= Free on Board. The value of export goods, including raw material, processing, packaging, storage and transportation up to the point where the goods are about to leave the country as exports. FOB does not include storage, export transport or insurance cost to get the goods to the export market.)
total biomass of about 21 M tonnes by the end of the 1980s. It has declined since to about 7 M tonnes in 2008 due to reduced recruitment and fishing.

A Korean hydroacoustic research survey in August-December 2003 estimated biomass from three strata with a total 5,742 nm sq. area (the three strata were on the high seas in the vicinity of 29°S – 35°S, 83°E – 95°E) to be 1,461,335 tonnes (SD ± 569,920) (Kim, DooNam, pers. comm.).

An ISVPA model of *T. murphyi* stocks on the high seas estimated the biomass to be about 7 million tonnes (Vasilyev et al. 2008).

Other stocks

An TISVPA model of *T. murphyi* stocks on the high seas in the south-east Pacific in the area of available international catch estimated the biomass to be about 7 million tonnes (Vasilyev et al., 2008).

There is no recent information for the other stocks.

The biomass of *T. murphyi* off the Peruvian coast was estimated by a surplus production model to be 8.5 million tonnes in 1983 with an annual yield generally of less than 400,000 tonnes, but the biomass was estimated to have fallen to less than 2.0 million tonnes in 1998 with annual yield of less than 300,000 tonnes (Garcia 2008).

5.2 Estimates of relevant biological reference points

5.2.1 Fishing mortality

Chilean stock

For the Chilean stock in 2005, using fishing mortality related to a target reference point of SB / SB0 = 40%, \(F / F_{SB40} \) was 1.2529.

Other stocks

There is no current information for the other stocks.

5.2.2 Biomass

Chilean stock

For the Chilean stock in 2005, the Spawning Potential Ratio (Mace et al., 1996) was 0.424.

Other stocks

There is no current information for the other stocks.
5.2.3 Other relevant biological reference points

Southwest Pacific stock

Recent aerial sightings data in New Zealand waters shows that this species is now less abundant at the surface than during the mid-1990’s (Taylor, 2002).

Other stocks

A surplus production model for the fishery in Peru was used to estimate the maximum sustainable yield (MSY) using data for the period 1997 to 2006 (Garcia 2008). This estimated MSY to be 562,000 tonnes.

There are no other reference points for the other stocks.

6. Impacts of Fishing

6.1 Catch of associated and dependent species

No estimates available.

6.2 Unobserved mortality of associated and dependent species

This is unlikely given the methods used (mid-water trawl and purse seine) and the small mesh sizes of that gear allowing limited escapement.

6.3 Bycatch of commercial species

Chilean fisheries

The main bycatch of the jack mackerel fishery is chub mackerel (*Scomber japonicus*) which can form substantive quantities at times (see the species profile at http://www.southpacificrfmo.org/working-groups/public/current-work/). Other species taken are hoki (*Macruronus magellanicus*), snoek (*Thyrsites atun*) and in recent years giant squid (*Dosidicus gigas*).

Peruvian fisheries

No current information available.

Central Pacific fisheries

No current information available.

Southwest Pacific fisheries

For high seas fisheries in the Southwest Pacific, the small jack mackerel catches are typically a bycatch of trawl fishing for other species (e.g. alfonsino). In the absence of
current targeting of the species in the area, the bycatch information is presented in the relevant species profiles.

6.4 Habitat damage

No direct habitat damage known in the mid-water trawl and purse seine fisheries and such damage is unlikely due to the gear types used.

6.5 Trophic relationships

There may be some concerns related to any excessive fishing-induced reductions in jack mackerel abundance, and the effects this may have on stability of Pacific Ocean predator-prey networks.

7. Management

7.1 Existing management measures

Chilean fisheries

In Chile the fishery is managed under a scheme of **annual** total allowable catch that, in the case of the industrial fleet, is allocated under a scheme of “maximum catch limits per shipowner” according to the shipowner’s historical catch records, and a correction factor established in fisheries law for the hold capacity of the fishing vessels. The Management includes spatial and sectoral controls (artisanal, industrial). Large reductions in catch occurred from the end of the 1990s due to regulations introduced to halt declining trends. A minimum size restriction is also applied in Chilean fisheries to protect the small fish and to avoid growth overfishing. Similar regulatory controls are applied to the Chilean fishery outside the EEZ as the catch is considered to be taken from the same (straddling) stock.

For the 2007 year, the total quota approved by Chilean authorities is 1,600,000 tonnes.

Peruvian fisheries

There is no information available.

In 2002 the Peruvian fishery for *T. murphyi* was restricted to providing fish exclusively for human consumption, to restrict catches and allow for the development of an industrial fleet fitted with refrigerated seawater systems. Further measures were introduced in 2007 to promote the rational exploitation of this resource.

Central South Pacific stock

There is no information available.

Southwest Pacific fisheries

In New Zealand fisheries waters, *T. murphyi* is managed as part of the tri-species jack mackerel fishery, with total allowable catches set for the combined species catch in a number of geographical regions (quota management areas) within the EEZ. A high seas
permitting regime applies to all New Zealand vessels fishing the high seas, but there are no jack mackerel specific management measures in place beyond the EEZ at this time.

In Australian waters, *T. murphyi* is a minor part of a multi-species purse seine and mid-water trawl fishery based mainly on other species (*T. declivis* yellowtail scad *T. novaezelandiae*, blue mackerel *Scomber australicus* and red bait *Emmelichthys nitidus*). This fishery is managed by a combination of input and output controls including annual total allowable catches and individual transferable quotas. A high seas permitting regime applies to all Australian vessels fishing the high seas, but there are no jack mackerel specific management measures in place beyond the EEZ at this time.

7.2 Fishery management implications

Chilean stock

The Chilean (straddling) stock of *T. murphyi* has been declared to be fully exploited under Chilean Fishing Law. The fishery management objective is to avoid further decline in the stock. For this purpose, annual catch quotas are applied to the industrial and artisanal fisheries. Introduction of this regulation and other measures caused a decrease in the fleet size due to rationalization of investment in the pelagic fishery. The fleet size in the northern fishery decreased by 30%, and by about 80% off central Chile. Current stock assessment suggests that this stock is at full exploitation and, given the moderate productivity of this species, caution with respect to any increases in fishing mortality is needed.

Southwest Pacific stock

Given the absence of current information, it is not appropriate to provide detailed comment for this stock. However, given the moderate productivity of this species and the lack of information about current stock biomass levels, due caution is appropriate.

Peruvian stock

Given the absence of current information it is not appropriate to provide detailed comment for this stock. However, given the moderate productivity of this species and the lack of information about current biomass levels, due caution is appropriate.

Central South Pacific stock

Given the absence of current information it is not appropriate to provide detailed comment for this stock. However, given the moderate productivity of this species and the lack of information about current biomass levels due caution is appropriate.

7.3 Ecosystem Considerations

All stocks

Habitat is unlikely to be of concern in this fishery due to the fishing methods used.

Large extractions of any important species such as jack mackerel may lead to changes in predator-prey relationships, which in turn could lead to shifts in food-web structure.
These shifts in community structure are not necessarily reversed by the reduction of fishing pressure. Neira et al. (2004), using eco-trophic modelling, found that fishing could have a negative eco-trophic impact on important fisheries resources such as the horse mackerel. Ecosystem modelling of pelagic species in upwelling systems has highlighted the alteration of matter fluxes in trophic webs caused by jack mackerel fishery removals. The estimated potential annual consumption of zooplankton by jack mackerel removed by fishing is equivalent to about 2.7 - 5 million tonnes C y\(^{-1}\) (Cury et al. 2000). The implications for the management of this fishery are unknown.

Bycatch data for jack mackerel fisheries in the proposed South Pacific RFMO area are very limited. Without quantitative information it is not possible to provide other than generic precautionary advice. Detailed data collection in the various fisheries should be undertaken to enable detailed assessment of bycatches.

Catch of associated and dependent species in the jack mackerel fisheries has not been documented on the high seas. Given the experience in other purse seine fisheries in the Pacific (which catch sharks, billfish and cetaceans in the central eastern Pacific) and other mid-water trawl fisheries which discard fish waste at sea (which result in mortality of seabirds in the south western Pacific), some incidental catch will occur in the Southeastern Pacific. Without information it is not possible to provide other than generic precautionary advice. Detailed data collection in the various fisheries should be undertaken to provide an opportunity to enable assessment of associated and dependent species by-catches.

8. **Research**

8.1 **Current and ongoing research**

There has been a substantial amount of historical research on this species, particularly by Russia. However, substantially less research has been conducted over the past decade, except within the EEZs of a few coastal states.

Chile

The Chilean jack mackerel fishery is monitored by observers and sampling programmes for the main fleets and at all landing locations. Biological sampling of landings for species composition, size, weight, sex and maturity is undertaken. Otoliths for age studies are also collected. Fishery independent monitoring surveys are also undertaken, including acoustic surveys off north and south-central Chile and annual egg production surveys to estimate the spawning stock using a daily egg production method.

Korea

Experimental mid-water trawling and hydroacoustic surveys were conducted in the Southeastern Pacific Ocean by the Korean research vessel, TAMGU No.1 and two commercial mid-water trawl vessels during August-December 2003.

New Zealand
The within-EEZ jack mackerel fishery is monitored by observers and sampling programmes for the main fleets, and at all main landing locations. Biological sampling of the landings for species composition, size, weight, sex and maturity is undertaken and otoliths are collected for age studies.

Russia

An hydroacoustic / trawl survey in the SEPO (beyond Chilean EEZ to 105ºW, area 362 ths sq miles) was conducted in 2002-2003. An hydroacoustic / trawl survey in the SEPO is carrying out in August-November 2009. Incorporate 2002 survey (see Kotonev 2006).

8.2 Research needs

Research is required to:

- Improve the understanding of the stock structure of *T. murphyi* to aid the development of appropriate management units.

 This should be done using multiple techniques such as genetics, otolith microchemistry, morphometrics, parasites and ecology to discriminate between separate stocks and test the current stock structure hypothesis. A collaborative approach in undertaking and funding this project will be required for a comprehensive and enduring outcome.

- Obtain biomass estimates for all stocks that are actively fished as inputs to stock assessment modelling.

 This will need careful planning to ensure that biomass estimates are obtained using standard methods that can be utilised for stock assessment purposes and that populations areas are identified correctly.

- Undertake a stock assessment for the actively fished stocks to support the provision of robust fisheries management advice.

 A preliminary task is the compilation of relevant data for undertaking stock assessment. A review of the available data will determine the types of assessment that might be able to be used. Any assessment should be done using a modern method capable of integrating all relevant available data and that can provide the types of management advice sought by the SPRFMO negotiation participants.

- Evaluate the bycatch levels and bycatch composition in the active high seas fisheries to allow assessment of interactions between fisheries and consideration of the issues associated with an ecosystem approach to fisheries management.

 This will require collection of detailed bycatch data across fisheries at the species level.
• Evaluate levels of incidental catch of associated and dependent species to allow
determination as to whether the catches are adverse and where appropriate the
development of mitigation measures.

 This will require the collection of verifiable data from the fishery across a
 representative sample of area, seasons and fishing methods

9. **Additional remarks**

 None at this time

10. **References**

 Abramov, A.A.; Kotlyar, A.N. (1980). Some biological features of the Peruvian jack mackerel,

 Anon (1985). Report of survey for the development of new distant water trawling grounds in

 Anon (1997). Review of the state of world fishery resources: marine fisheries. 15 Southeast
 Pacific, FAO statistical area 87. FAO Fisheries Circular No. 920 FIRM/C920.

 Arcos, D., C. Gatica, P. Ruiz, A. Sepulveda, M.A. Barbieri, R. Alarcon, S. Nuñez, J. Chong, J.
 Cordova, A. Rebollo, C. Gonzales, F. Contreras, M. Aguayo, F. Vejar, P. Torres and C.
 FIP 2004-33, Fondo de Investigación Pesquera.

 Avdeyev, V.V. (1992). On the possible use of parasitic isopods as bioindicators of the migratory

 Bahamonde, R. (1978). Distribución y abundancia relativa de los principales recursos demersales
 entre Corral (40ºS) y el Cabo de Hornos (57ºS). Instituto de Fomento Pesquero
 IFOP/JAMARC. Informe Interno.

 Bailey, K. (1987). Townsend Cromwell surveys South Pacific albacore resource. Catch, 14(7);
 20–22.

 Bailey, K. (1989). Description and surface distribution of juvenile Peruvian jack mackerel,
 Trachurus murphyi, Nichols from the subtropical convergence zone of the central South

 exploited in the South East Pacific Ocean. Paper presented to the SPRFMO Chilean Jack

32

