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Introduction 
This study involves collaborative work between the National Institute of Water and Atmospheric 
Research (NIWA, New Zealand) and the Fisheries Development Institute (IFOP, Chile), funded by the 
Western and Central Pacific Fisheries Commission (WCPFC) under the ABNJ Tuna Project. The main 
goal of the ABNJ project is to develop a Southern Hemisphere pelagic shark stock assessment for 
management purposes, in which fishing data collected by the Chilean government plays a relevant 
role. This project builds on previous collaborative work between NIWA and IFOP, also funded by the 
ABNJ Tuna Project (Hoyle et al. 2017a).  

Fishery 
The fishery for pelagic sharks in the south-eastern Pacific is conducted mainly by longline and gillnet 
fleets from Chile, but distant water fleets from various countries are also involved. The Chilean 
pelagic shark fishing fleets comprise industrial and artisanal vessels, which have historically been 
part of swordfish fishery (Xiphias gladius). Swordfish catches have been reported in Chile since the 
early 1960s. The industrial longline fleet operates between 100 and 800 nautical miles from the 
coast, overlapping with the fishing zones of large longline artisanal vessels. The small artisanal 
component (small longline and gillnet) operates within 40 nautical miles from the coast mainly 
because of its low autonomy and fishing power. Annex 1 contains a description of these fleets and 
vessels. 

Commercial targeting 
Historically, pelagic shark catches have been treated as by-catch of the swordfish fishery; however, 
over the last eight years, deliberate targeting has been identified, representing a multispecies fishery 
for pelagic sharks, with fins sold in Asian markets (Hernandez et al. 2008). Recent fishing reports, 
delivered by the IFOP, show that blue shark (Prionace glauca) and shortfin mako (Isurus oxyrinchus) 
are heavily targeted in most fishing sets. Similarly, the porbeagle shark (Lamna nasus) has become 
relevant in the operations of reported fisheries in southern Chile, and lastly, at least 10 other shark 
species are caught occasionally in much of the fishery area. Hoyle et al. (2017a) report significant 
numbers of sharks in swordfish catches over 10 years, which agree with recent swordfish fishery 
reports indicating that the catch proportion (in number) of the principal shark species exceeds the 
swordfish catch, due to greater artisanal fleet targeting during the last eight years. 

Indicators for stock assessment 
The Swordfish Observer and Monitoring programs, developed by the Fisheries Development 
Institute (IFOP) in Chile, aim to maintain adequate sampling coverage for the principal pelagic shark 
species. This study uses both catch/effort records and biological samples collected under these 
programs to explore spatial and temporal patterns of shark life history, and to develop indicators 
that support the development of conceptual dynamic population models of pelagic sharks, which 
would facilitate integration of these indicators into quantitative models for management purposes in 
the Pacific Ocean. 
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Methods 
Fishing data 
Several sets of historical data were used in this study. Most data were obtained under the 
framework of the Scientific Observer Program from commercial fishing vessels. For some analyses 
these were complemented by fishing logbook records from vessels without observers, compiled 
after the fishing trip. However due to suspected trends in the reliability of reporting of shark catches 
in the logbook data,  only observer records were used for CPUE standardization. Analyses were 
carried out separately for industrial and artisanal longline fleets between 2001 and 2018. Due to 
operational differences, the records of the artisanal longline fleet were separated by strata of 
vessels longer or shorter than 12 meters. Table 1 shows the total number of fishing trips, coverage 
by scientific observers, and the number of participating vessels.  

Due to the sparse observer and logbook coverage for the small artisanal vessels, only simple 
analyses were carried out for this fleet, with most analyses focusing on the large artisanal and 
industrial fleets.  

Two data types were integrated in this study: (a) catch data (kg and number) and effort (number of 
hooks, number of sets by stratum) for blue sharks and shortfin mako sharks, together with 
operational characteristics of the fishing set such as date, registered position in degree-minute-
second, depth, and fishing area; (b) individual biological samples with information on length (cm, 
curve fork lengths), sex, and weight (kg). Lunar illumination (‘moon’) and moon phase (‘phase’) were 
determined from the set date using the R package lunar (Lazaridis 2014).  

Models 
Several types of generalised additive model (gam) were implemented to predict variables of interest 
such as catch number, catch success, average length of sharks, individual spatial length distribution, 
and gender spatial segregation. The analyses were implemented for strata that combined type of 
longline fleet (industrial, major artisanal, minor artisanal), species under study (blue shark, shortfin 
mako), and sex (male, female). Prior to analysis, the data were prepared with checks for errors and 
outliers. We selected predictors based on goodness of fit and sensitivity analysis. 

The categorical response variables catch success (probability of non-zero catch) and sex ratio 
(probability of presence of males) were modelled assuming a binomial distribution with the 
following variables as predictors: temporal (year, month), spatial (longitude, latitude, fishing zone), 
operational (depth of hooks), and environmental (relative lunar illumination and moon phase, 
determined from the set date).   

Model 1: P(y) ~ year_bin + predlist, family = binomial, 

where P is the probability of catch success or presence of males at given year and predlist 
comprises the selected predictors. 

The continuous variables catch (number or kg) per non-zero set and catch per unit of effort (CPUE) 
were modelled using gam with a lognormal distribution. Log-scale transformation of the response 
variable (y) was performed to normalise the residuals, following the model: 

Model 2: log(y) ~ year_pos + predlist, family = Gaussian. 

All analyses were performed in R (R Core Team 2018) using packages mgcv (Wood 2011), mgcViz 
(Fasiolo et al. 2019), ggplot2 (Wickham 2016), and tidyverse (Wickham 2017).  
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Finally, a delta-generalized linear model (dglm) was fitted to catch and effort data for each shark 
species and used to construct standardised annual indices for blue shark and shortfin mako. The 
delta approach decomposes the catch rate into the probability of positive catch (encounter 
probability) and the non-zero catch rate (Lo et al. 1992; Hoyle & Maunder 2005), therefore the dglm 
was specified as:  

Model 3: y ~ b(year_bin) * exp(year_pos), 

where year_bin is the logit-linked annual linear predictor of the binomial model (Model 1) and 
year_pos is the log-linked annual linear predictor for the non-zero catch (Model 2). 

Best models were selected from a set of model candidates using as criteria the lowest log-likelihood 
value, Wald-like tests (Wood 2013), Akaike information criteria (AIC, Akaike 1973) and degrees of 
freedom criteria. Model differences were reported as delta AIC, which is the absolute difference in 
the AIC values. 

Results 
Fishing data 
Data from a total of 47,619 fishing sets collected between 2001 and 2018 (32.1% Industrial Fleet, 
10.5% Artisanal Large Fleet, and 57.4% Artisanal Small Fleet) were included in the analyses. The 
fishing logbooks show that during the study period the industrial and large artisanal fleets deployed 
an average of 1,219 hooks per fishing set. For the small artisanal fleet, the low scientific observer 
coverage (see Table 1) led to uncertainty about the number of hooks per fishing set, so the number 
of sets reported at the end of the fishing trip was used as the unit of effort. For this fleet, 5.2 sets 
per fishing trip were deployed on average, with a maximum of 24 sets. Annex 1 provides details on 
the fishing effort deployed by the fleets for the period 2001-2018. 

The trends in the capture of blue and shortfin mako sharks differed among fleets (Figure 1). On the 
one hand, the industrial longline fleet’s capture of blue sharks has steadily declined due to a 
reduction in fishing effort. For the artisanal components, the small artisanal fleet shows clear 
indications of targeting both shark species, with marginal catches of swordfish throughout the study 
period. For the large artisanal fleet, shark catches increase while swordfish catches are very variable, 
with some decline. Their catches represent on average (for all years and both species) about 13% of 
the catches of the small artisanal fleet (Table 2).  

Biological patterns 
Patterns in standardized sex ratio data showed a degree of spatial separation for both species. The 
figures that illustrate these patterns are most reliable in central areas with more data. Surface 
splines can extrapolate trends unrealistically at the edges, which should be viewed with caution.  

Blue sharks show spatial patterns in sex ratio with similar patterns in data from both the large 
artisanal and the industrial fleets. Females are more commonly caught closer to the coast and 
further south (Figure 2). There is also significant variation through the year, with more males caught 
in the first half of the year, and the proportion of females peaking in September- October. There is a 
small amount of interannual variation, but it has much less influence than the other effects.  

For shortfin mako sharks the trends are also similar between fleets, although there are some 
differences probably due to both relative sample sizes  and uncertainty in edge areas with sparse 
data (Figure 3). However, shortfin makos show quite a different spatial pattern from blue sharks, 
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with males more common than females closer to the coast and further south. Seasonal effects are 
relatively minor as are interannual effects.  

Given the differing spatial distributions of males and females, and the tendency for sharks to 
distribute separately by size class, maturity state, and sex, we explored size distributions separately 
by sex. For male blue sharks there was a strong pattern of larger sharks being caught in the 
northwest of the area fished (Figure 4). There was also strong seasonality with larger sharks caught 
from December to May, and the smallest sharks caught from August to October. There was also 
significant interannual size variation, but this varied somewhat between fleets.  

Female blue sharks also tended to be smaller closer to the coast and larger in the northwest (Figure 
5). However, seasonal variation was limited and inconsistent among fleets. There was also some 
interannual size variation, but this too was inconsistent among fleets.   

For shortfin mako sharks, males tended to be larger in the south and west, and smaller in the 
northeast (Figure 6). There is a suggestion of smaller sizes in the far south-west, but it is based on 
very low sample sizes, and on the edge of the plot where estimates are least reliable. They also 
showed seasonal size variation, with the largest sharks caught from March to May. Sizes were 
variable through time, but with a suggestion of smaller sizes recently. Female size patterns were 
unclear but not inconsistent with patterns observed for males. They appear to be larger in the south 
and west, apart from a suggestion of small sizes in the far southwest based on sparse data. They are 
also largest from February to May (Figure 7). There also appeared to be some decline in mean size 
through time. Length frequency distributions by year for each fleet are provided in Annex 1, in 
Figures A2.1, A2.2, A2.3, and A2.4.  

CPUE standardization 
Catch and effort data were standardized for each species and fleet using a delta lognormal 
approach. Both Poisson and lognormal distributions were trialled for the positive component and 
lognormal fitted the data very well (Figure 8), much better than the Poisson.  

For both the probability of non-zero catches and the distribution of non-zero catches, the factors 
year, month, and vessel were statistically significant in almost all cases (Table 3). The smoothers 
s(lat, lon) and s(nhooks) were statistically significant in all cases but two (Table 4): the smoother for 
number of hooks was marginally significant for nonzero catch rates of both blue sharks and shortfin 
mako sharks caught by the artisanal fleet. Lunar effects were significant in all cases. Lunar 
illumination was the most parsimonious catch rate predictor in most cases, except for catches of 
shortfin mako by the industrial fleet, where moon phase was a better predictor in both the binomial 
and positive components.  

Spatial patterns of blue shark probability of non-zero catch rates were similar for artisanal and 
industrial fleets, with higher proportions of non-zero catches in the east and south (Figure 9). Higher 
non-zero catch rates (Figure 10) were also apparent for the artisanal fleet in the east and south, 
whereas for the industrial fleet the distributions were similar but less clear. For shortfin mako 
sharks, catch rates were generally higher in the south, but patterns were less clear than for blue 
shark (Figures 11 and 12).  

Standardized catch rate indices for blue shark in the artisanal fleet show a variable but decreasing 
trend (Figure 13). Indices for the industrial fleet are also very variable, but neither increase nor 
decline (Figure 14).  
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For shortfin mako sharks the proportions of nonzero catches by the artisanal fleet increase strongly 
to reach nearly 90% in 2010 (Figure 15). After 2009 the proportions of nonzero catches stabilises but 
the catch rates in positive sets continue to rise. The resulting combined index increases substantially 
across the time series. As for blue sharks, in the industrial fleet the proportions of nonzero sets 
increases over the time series, in this case starting at less than 40% in 2001 and then increasing to 
reach 90% in 2010 (Figure 16). The combined CPUE shows a strong increasing trend. Indices are 
provided in Tables 5 and 6.   

Discussion 
This analysis has successfully standardized size, sex ratio, and CPUE data, and identified patterns in 
spatial and seasonal distribution among different parts of the population. Sharks are well-known for 
their tendency to separate by sex and size class (Springer 1967; Wearmouth & Sims 2008).  

Spatial variation in sex ratio was apparent for both blue sharks and shortfin makos. For blue sharks, 
males were found further north, in warmer waters, and away from the coast. Nakano & Nakasawa 
(1996) also found spatial distribution differences by sex for blue sharks, with males caught at 
warmer temperatures on average than females. Nakano (1994) developed a general model for male 
and female blue shark distribution in the north Pacific, with more segregation between sexes at the 
nursery and subadult stages than for adults.  

For shortfin makos, males were more common close to the coast with females more common in 
oceanic waters. In the central south Pacific, strong sexual segregation was found with more female 
shortfin makos to the east of -140 degrees and more males to the west (Mucientes et al. 2009).  

Blue sharks showed strong size patterns for both males and females, much larger to the west and in 
warmer waters further north than near the coast. Similarly, in longline surveys east of Japan, both 
sexes of blue sharks tended to be caught at larger sizes in warmer waters (Ohshimo et al. 2016). For 
males in the current study there was a seasonal size pattern, with larger sharks caught early in the 
year, but no such pattern was apparent for females.  

Shortfin makos showed some spatial size patterns but not very strongly, with a suggestion of larger 
males to the west. There was clear seasonality for both sexes, with larger sharks caught early in the 
year. In the western North Pacific, most hotspots for “immature” shortfin mako occurred in the 
coastal waters of Japan, while hotspots for “subadult and adult” occurred in the offshore or coastal 
waters of Japan (Kai et al. 2017).  

The standardized proportions of non-zero sets for both blue sharks and shortfin makos increased at 
the beginning of the industrial fleet time series. This may be due to increased targeting of sharks, 
which has not been accounted for in this analysis. Further work would be useful to explore changes 
in targeting, which has also been reported to be increasingly focused on sharks (author pers. obs). 
Cluster analysis of species composition (He et al. 1997; Hoyle et al. 2015) would be a useful tool for 
exploring the available data.  

Further work would also be useful to explore reporting rates in the logbook data, though they were 
not used in the CPUE analyses.  This issue could be important in interpreting differing reporting rates 
between observers and logbooks or increasing reporting rates in logbooks due to increased 
targeting. Observers started covering the large artisanal longline fleet in 2007 and coverage 
increased thereafter (Table 1). In future it would be useful to compare catch rates between observer 
records and vessel logbooks, and to estimate reporting reliability for vessels as done for shark 
reporting by the Japanese fleet (Hoyle et al. 2017b).  



6 

Another issue that should be addressed in future work is to develop separate indices for sharks of 
different size and sex classes. This may be particularly important for blue sharks, which appear to 
show more segregation by size.  

Observer coverage in the industrial fleet dropped from its previous very high levels to just below 
10% as of 2014.  While this lower level of observer coverage is still high compared to many fisheries 
around the world, it results in greater uncertainty in the year effects for 2015-2018 in the form of 
wider confidence intervals on the estimates.   
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Tables 
Table 1: Number of fishing trips, presence of scientific observer by trip, and number of vessels participating in the fishery, by 
type fleet. 

 
 

Table 2: Annual average catch of sharks by fleet type between period 2001-2018. 
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Table 3: Generalized additive model results for the three factors fitted for each species, fleet, and distribution. Results 
comprise degrees of freedom, Chi squared, and p value estimates. I = industrial fleet, A = large artisanal fleet. P values are 
highlighted by * (< 0.05) or ** (< 0.01). 

Species Distribu-
tion 

Fleet Factor DF Chi.squared p.value 

Blue shark bin I year 17 394.7 2.43E-73** 
Blue shark bin I month 10 241.7 2.96E-46** 
Blue shark bin I vessel 16 873.1 1.54E-175** 
Blue shark bin A year 11 65 1.10E-09** 
Blue shark bin A month 11 15.2 0.175 
Blue shark bin A vessel 2 21.7 1.94E-05** 
       
Blue shark pos I year 17 41.5 1.12E-134** 
Blue shark pos I month 10 225.5 0.00** 
Blue shark pos I vessel 16 114.1 0.00** 
Blue shark pos A year 11 12 1.02E-21** 
Blue shark pos A month 11 16.5 7.49E-31** 
Blue shark pos A vessel 2 7.7 0.000456** 
       
Shortfin mako bin I year 17 987.3 4.79E-199** 
Shortfin mako bin I month 11 373.6 2.45E-73** 
Shortfin mako bin I vessel 16 625.9 7.32E-123** 
Shortfin mako bin A year 11 58 2.13E-08** 
Shortfin mako bin A month 11 104.8 1.95E-17** 
Shortfin mako bin A vessel 2 4.7 0.0961 
       
Shortfin mako pos I year 17 64.7 1.30E-210** 
Shortfin mako pos I month 11 34.4 9.31E-73** 
Shortfin mako pos I vessel 16 38.4 2.29E-116** 
Shortfin mako pos A year 11 18.8 1.84E-35** 
Shortfin mako pos A month 11 15.7 3.15E-29** 
Shortfin mako pos A vessel 2 5.3 0.0051** 
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Table 4: Generalized additive model results for the three smoothers (location, number of hooks, and either lunar 
illumination (“moon”) or moon phase (“phase”)) fitted for each species, fleet, and distribution. Results comprise effective 
degrees of freedom, Chi squared, and p value estimates. I = industrial fleet, A = large artisanal fleet. P values are highlighted 
by * (< 0.05) or ** (< 0.01).  

Species Distribution Fleet Smoother Effective DF Chi.sq p.value 
Blue shark bin I te(lon,lat) 45.18 252 1.90E-34** 
Blue shark bin I s(moon) 0.8 3.6 0.0322* 
Blue shark bin I s(nhooks) 8.51 97.8 3.46E-18** 
Blue shark bin A te(lon,lat) 47.39 110.2 1.34E-05** 
Blue shark bin A s(moon) 0.84 4.7 0.0154* 
Blue shark bin A s(nhooks) 8.71 14.8 0.0798 
       
Blue shark pos I te(lon,lat) 59.52 30.6 0.00** 
Blue shark pos I s(moon) 2.35 5.5 1.37E-12** 
Blue shark pos I s(nhooks) 7.2 9.1 2.86E-16** 
Blue shark pos A s(lon,lat) 32.29 4.7 8.93E-37** 
Blue shark pos A s(moon) 2.29 1.1 0.00455** 
Blue shark pos A s(nhooks) 2.38 1.3 0.00179** 
       
Shortfin mako bin I te(lon,lat) 63.85 378.3 3.20E-44** 
Shortfin mako bin I s(nhooks) 6.69 81.7 6.06E-17** 
Shortfin mako bin I s(phase) 4.93 141.7 4.44E-33** 
Shortfin mako bin A te(lon,lat) 23.07 52.1 0.00741** 
Shortfin mako bin A s(moon) 1.44 24 4.03E-07** 
Shortfin mako bin A s(nhooks) 1.63 3.8 0.0823 
       
Shortfin mako pos I te(lon,lat) 63.15 9.9 1.79E-97** 
Shortfin mako pos I s(nhooks) 5.31 13.1 3.90E-27** 
Shortfin mako pos I s(phase) 5.24 16.8 9.44E-35** 
Shortfin mako pos A te(lon,lat) 39.92 4.6 2.45E-21** 
Shortfin mako pos A s(moon) 1.08 8.3 1.95E-18** 
Shortfin mako pos A s(nhooks) 1.42 0.8 0.0094** 
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Table 5: Delta lognormal CPUE indices for the large artisanal fleet, for blue shark (left) and shortfin mako (right), with 95% 
confidence intervals.  

 Blue shark Shortfin mako shark 
year Estimate 2.5% 97.5% Estimate 2.5% 97.5% 
2007 1.069 1.069 1.069 0.298 0.298 0.298 
2008 1.523 1.046 1.561 -0.257 -0.073 -0.480 
2009 1.088 0.891 1.105 0.155 0.025 0.456 
2010 1.587 1.405 1.604 0.990 0.733 1.061 
2011 1.320 1.030 1.366 0.687 0.543 0.731 
2012 0.622 0.199 0.870 0.627 0.383 0.739 
2013 1.091 0.640 1.200 0.682 0.390 0.827 
2014 1.233 0.865 1.306 1.064 0.758 1.179 
2015 0.630 0.177 0.904 1.104 0.717 1.262 
2016 0.245 0.048 0.509 1.662 1.344 1.751 
2017 0.584 0.140 0.914 2.666 2.454 2.699 
2018 1.010 0.328 1.320 2.321 1.652 2.486 

 

Table 6: Delta lognormal CPUE indices for the industrial fleet, for blue shark (left) and shortfin mako (right), with 95% 
confidence intervals. 

 Blue shark Shortfin mako shark 
year Estimate 2.5% 97.5% Estimate 2.5% 97.5% 
2001 1.050 1.050 1.050 0.298 0.298 0.298 
2002 0.812 0.784 0.836 -0.257 -0.073 -0.480 
2003 0.398 0.365 0.428 0.155 0.025 0.456 
2004 0.743 0.706 0.773 0.990 0.733 1.061 
2005 0.802 0.763 0.833 0.687 0.543 0.731 
2006 1.089 1.065 1.107 0.627 0.383 0.739 
2007 1.293 1.263 1.313 0.682 0.390 0.827 
2008 0.995 0.967 1.014 1.064 0.758 1.179 
2009 0.891 0.851 0.920 1.104 0.717 1.262 
2010 1.291 1.252 1.317 1.662 1.344 1.751 
2011 1.341 1.310 1.359 2.666 2.454 2.699 
2012 0.693 0.670 0.708 2.321 1.652 2.486 
2013 0.811 0.763 0.840 1.003 0.945 1.039 
2014 1.715 1.651 1.740 1.241 1.168 1.287 
2015 1.219 0.932 1.299 1.195 1.054 1.282 
2016 1.010 0.788 1.070 1.831 1.655 1.926 
2017 0.538 0.376 0.619 2.577 2.335 2.661 
2018 1.309 1.023 1.354 2.239 2.088 2.285 
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Figures 

 
Figure 1: Catch time series of blue shark, shortfin mako and swordfish by type fleet. 
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Figure 2: Sex ratios of blue sharks in catches by large artisanal (above) and industrial (below) longliners, by latitude and 
longitude (left), and by year (above right) and month (below right), as predicted from a generalized additive model. Higher 
proportions of males are represented by warmer colours. The rug components of the plot show the distribution of the data. 
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Figure 3: Sex ratios of shortfin mako sharks in catches by large artisanal (above) and industrial (below) longliners, by 
latitude and longitude (left), and by year (above right) and month (below right), as predicted from a generalized additive 
model. Higher proportions of males are represented by warmer colours. The rug components of the plot show the 
distribution of the data. 
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Figure 4: Blue shark male size distributions in large artisanal (above) and industrial (below) fisheries.Larger sizes are 
represented by warmer colours. The rug components of the plot show the distribution of the data.  
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Figure 5: Blue shark female size distributions in large artisanal (above) and industrial (below) fisheries. Larger sizes are 
represented by warmer colours. The rug components of the plot show the distribution of the data. 
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Figure 6: Shortfin mako shark male size distributions in large artisanal (above) and industrial (below) fisheries. Larger sizes 
are represented by warmer colours. The rug components of the plot show the distribution of the data. 
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Figure 7: Shortfin mako shark female size distributions in large artisanal (above) and industrial (below) fisheries. Larger 
sizes are represented by warmer colours. The rug components of the plot show the distribution of the data. 
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Figure 8: Residual diagnostic plots for generalized additive models of catch rates for sets with nonzero catches, assuming 
the lognormal distribution, fitted to data from large artisanal (above) and industrial (below) fleets, for blue sharks (left) and 
shortfin mako sharks (right).  
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Figure 9: Blue shark spatial, annual and monthly distributions of the proportions of non-zero catches in large artisanal 
(above) and industrial (below) fisheries. Distributions are marginal distributions for each parameter estimated using 
generalized additive models. Higher catch rates are represented by warmer colours. The rug components of the plot show 
the distribution of the data. 
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Figure 10: Blue shark spatial distributions of catch rates in non-zero catches in large artisanal (above) and industrial (below) 
fisheries. Distributions are marginal distributions for each parameter estimated using generalized additive models. Higher 
catch rates are represented by warmer colours. The rug components of the plot show the distribution of the data. 
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Figure 11: Shortfin mako spatial, annual and monthly distributions of the proportions of non-zero catches in large artisanal 
(above) and industrial (below) fisheries. Distributions are marginal distributions for each parameter estimated using 
generalized additive models. Higher catch rates are represented by warmer colours. The rug components of the plot show 
the distribution of the data. 
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Figure 12: Shortfin mako shark spatial distributions of catch rates in non-zero catches in large artisanal (above) and 
industrial (below) fisheries. Distributions are marginal distributions for each parameter estimated using generalized 
additive models. Higher catch rates are represented by warmer colours. The rug components of the plot show the 
distribution of the data. 
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Figure 13: Blue shark large artisanal fleet standardized CPUE indices, including a) proportions of non-zero sets (top left), b) 
catch rates in non-zero sets (top right), c) the abundance index as a product of a and b (bottom left), and d) the abundance 
index normalized to a mean of 1 (bottom right).  
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Figure 14: Blue shark industrial fleet standardized CPUE indices, including a) proportions of non-zero sets (top left), b) catch 
rates in non-zero sets (top right), c) the abundance index as a product of a and b (bottom left), and d) the abundance index 
normalized to a mean of 1 (bottom right). 
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Figure 15: Shortfin mako large artisanal fleet standardized CPUE indices, including a) proportions of non-zero sets (top left), 
b) catch rates in non-zero sets (top right), c) the abundance index as a product of a and b (bottom left), and d) the 
abundance index normalized to a mean of 1 (bottom right). 
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Figure 16: Shortfin mako shark industrial fleet standardized CPUE indices, including a) proportions of non-zero sets (top 
left), b) catch rates in non-zero sets (top right), c) the abundance index as a product of a and b (bottom left), and d) the 
abundance index normalized to a mean of 1 (bottom right). 
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Annex 1 
Table A2.1 - Total effort (in number of sets and hooks) deployed by year for the Industrial longline fleet.  Also shown are the 
average, standard deviation, minimum and maximum numbers of hooks.   

 
 
Table A2.2 - Total effort (sets y hooks) deployed by year for the Large artisanal longline fleet. 
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Table A2.3 - Total of fishing sets and percentage of positive sets with respect the total sets of the fleet. 
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Figure A2.1: Blue shark proportions at length in artisanal longline fisheries for males (left) and females (right) by year.  
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Figure A2.2: Blue shark proportions at length in industrial longline fisheries for males (left) and females (right) by year.  
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Figure A2.3: Shortfin mako shark proportions at length in artisanal longline fisheries for males (left) and females (right) by 
year. 
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Figure A2.4: Shortfin mako shark proportions at length in industrial longline fisheries for males (left) and females (right) by 
year. 
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