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Abstract 

A methodological approach is presented for modelling the occurrence patterns of jack 
mackerel (Trachurus murphyi) with the aim i) to describe the spatial distribution of the 
species; ii) to determine the environmental variables that drives the spatial distribution; iii) 
to provide insights of the spatial structure of the resource for fisheries management 
purposes. Information from the commercial catches of jack mackerel is used to implement 
the model. This information comes from different fleets that operate in the southeastern 
Pacific: Ecuador and Peru, northern Chile, south central Chile and the international fleet 
from the high sea. The presence/absence of jack mackerel is modelled with a hierarchical 
Bayesian spatial model using the geographical and environmental characteristics of each 
fishing location. Maps of predicted probabilities of presence are generated using Bayesian 
kriging. Bayesian inference on the parameters and prediction of presence/absence in new 
locations (Bayesian kriging) are made by considering the model as a latent Gaussian model. 
This allows the use of the integrated nested Laplace approximation (INLA) which has been 
seen to be quite a bit faster than the well-known MCMC methods. In particular, the spatial 
effect has been implemented with the Stochastic Partial Differential Equation (SPDE) 
approach. The analysis shows that environmental and geographical factors can play an 
important role in directing local distribution and variability in the occurrence of jack 
mackerel. Although this approach is used to recognize the habitat of adult jack mackerel, it 
could also be for other different life stages in order to improve knowledge regarding the 
species population structure. 
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1. Introduction 

Modelling patterns of the presence/absence of the species using local environmental factors 
has been extensively used to address several issues, including identifying essential fish 
habitats and predicting the response of species to environmental features (Giannoulaki et 
al., 2013). Species distribution models (SDMs) are an essential tool for science and 
management, as they provide a clear picture of the distribution dynamics and extent of 
marine resources (Pennino et al., 2014; Martínez-Minaya et al., 2018). In general, 
information to build marine SDMs can be obtained from two main sources: catch-
independent and catch-dependent data. 
 
As has been pointed out by Muñoz et al. (2013), different approaches and methodologies 
have been proposed for SDMs: species envelope models such as BIOCLIM (Busby, 1991), 
Generalized Linear Models (GLM), Generalizes Additive Models (GAM), neural networks 
(Zhang et al., 2008) and the multivariate adaptive regression splines (MARS) (Leathwick et 
al., 2005). Most of these methods are explanatory models that assess the presence of a 
species in relation to a suite of one or more explanatory variables (e.g. sea temperature, 
bathymetry, etc.). The theoretical basis of these methods consider that the observations are 
independent, while the fisheries data are often characterized by presenting spatial 
autocorrelation under the consideration that the species display a preferential distribution 
due to environmental conditions or features (Hurlbert, 1984). In addition, one of the main 
concerns associated with fisheries data is that target-species samples are collected by 
preferential sampling as the fishing fleets are commercially driven (Conn et al., 2017). 
 
Chilean jack mackerel (CHJM; Trachurus murphyi, Nichols) a highly migratory pelagic 
species that is widely distributed in the southeastern Pacific from Ecuador to Chile, 
reaching across the Pacific to New Zealand and Tasmania (Bailey, 1989; Gretchina et al., 
1998). The wide distribution of this species in the region and its highly migratory behavior 
make it difficult to gather evidence supporting specific hypotheses about its spatial 
dynamics and population structure. Furthermore, due to its transboundary nature, jack 
mackerel is caught by several fleets that operate in different areas of its global distribution. 
Since fishing data are the most abundant information related to the distribution of the 
species, it is important to gather databases from all these fleets to study the spatial 
distribution and its relationship with environmental variables. 
 
In this contribution, the use of a hierarchical Bayesian model is presented to predict the 
occurrence of jack mackerel incorporating the environmental and spatial characteristics of 
each fishing location to a specific fishing year. In particular, this approach uses the 
geographical characteristics, such as latitude, longitude of each fishing location from 
different fleets that operate in different areas: i) Ecuador and Peru; ii) central and northern 
Chile; iii) central and southern Chile; iv) international high sea fleet. The Bayesian 
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approach is appropriate to spatial hierarchical model analysis because it allows both the 
observed data and model parameters to be random variables (Banerjee et al., 2004), 
resulting in a more realistic and accurate estimation of uncertainty. In particular, the 
integrated nested Laplace approximations (INLA) methodology (Rue et al., 2009) and 
software (http://www.r-inla.org) are used as an alternative to Markov chain Monte Carlo 
(MCMC) methods. Another advantage of this approach it is their generality, which makes it 
possible to perform Bayesian analysis in a straightforward way and to compute model 
comparison criteria and various predictive measures so that models can be compared easily 
(Rue et al., 2009). 
 

2. Methods 

2.1. Study area and jack mackerel data base 

The study area is bounded by longitude 65ºE to 120ºW and latitude 0º to 50ºS in the 
southeastern Pacific, where jack mackerel fishery operates throughout the year. Jack 
mackerel occurrence data were obtained from fisheries data available by the EU (Dutch 
fleet), Peruvian and Chilean fishing fleets (Table 1). In particular, for the application of this 
methodological approach, the database of the 2009 fishing season was used, when 
information was available from all the fleets. Due to the fisheries nature of the data, only 
records positive samples (i.e. presences) are available in the original dataset. To generate a 
presence/absence dataset, pseudo-absences were generated randomly for the study area. A 
set of 1000 pseudo-absences were generated times using the “randomPoints” function 
(simple random sampling without replacement) from the “dismo” package (Hijsman et al., 
2017) of the R software (R Development Core Team, 2019). 

Table 1. Jack mackerel fisheries presence data used to construct the species distribution 
model for jack mackerel distribution. 

 

2.1. Environmental data 

The environmental variables were obtained from different sources including satellite 
information and regional biogeochemical models. Five abiotic and biotic variables were 
processed and analyzed based on previous studies analyzing jack mackerel environmental 
preferences (Nuñez et al., 2009): i) monthly sea surface temperature; ii) monthly 

Fleet Source
Number of 

records
Temporal 
resolution

Perú PRODUCE 35 Monthly
central-northern Chile IFOP 670 Daily
central-southern Chile INPESCA-IFOP 925 Daily
International high seas European Union 624 Monthly
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chlorophyll-a  (https://oceancolor.gsfc.nasa.gov/); iii) geostrophic currents derived eddy 
kinetic energy (https://www.aviso.altimetry.fr/); iv) wind induced turbulence 
(https://climatedataguide.ucar.edu/); v) dissolved oxygen at a depth of 50 meters (ROMS-
PISCES model). From the dissolved oxygen information (DO) a derived dummy variable 
(ZMO) was obtained: the presence of minimum oxygen (if DO <= 48 µmol L-1, ZMO = 1; 
if OD > 50 µmol L-1, ZMO = 0). The environmental variables were extracted for each jack 
mackerel occurrence record, according to their position and date. All environmental 
variables were tested for correlation, collinearity, outliers and missing values considered to 
be use in the models. As expected, dissolved oxygen was highly correlated to ZMO 
(Pearson correlation, r > 0.8; p-value < 0.001) and was eliminated. The rest of the variables 
presented low correlation and collinearity values. Moreover, variables were standardized 
using the function “decostand” in the “vegan” package (Oksanen et al., 2013) of the R 
software, in order to facilitate interpretation and to enable comparison of relative weights 
between variables (Orúe et al., 2020). 
 
2.2. Species distribution model 
Hierarchical Bayesian models were used to predict the probability of jack mackerel 
presence with respect to the selected environmental variables using catch-dependent data. 
Following Orue et al (2020), for modelling purpose the response variable was a binary 
variable that represents the presence (1) or absence (0) of jack mackerel (Yi) in each 
location i, and then the occurrence was modelled as: 

𝑌𝑌𝑖𝑖~𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵(𝜋𝜋𝑖𝑖)𝑖𝑖 = 1, … ,𝑝𝑝 

log(𝜋𝜋𝑖𝑖) = 𝑋𝑋𝑖𝑖𝛽𝛽 + 𝑊𝑊𝑖𝑖 

𝛽𝛽~𝑁𝑁(𝜇𝜇𝛽𝛽 , 𝑞𝑞𝛽𝛽) 

𝑊𝑊𝑖𝑖~𝑁𝑁(0,𝑄𝑄(𝑘𝑘, 𝑡𝑡)) 

where πi represents the probability of the species presence for a given location (i), Xiβ 
represents the matrix of the fixed effects for the linear predictor and Wi represents the 
spatially structured random effect at the location i. Gaussian distributions with a zero mean 
and covariance matrix (Q) was assumed for the spatial component, which depend on the 
hyperparameters k and τ, and determine the range of the effect and the total variance, 
respectively. Hyperpriors for k and τ are centered in values such that the range is about 20% 
of the diameter of the region and the variance is equal to 1 (Lindgren et al., 2011). 

Integrated Nested Laplace Approximations (INLA) approach (Rue et al., 2009) and the 
package INLA (http:\\www.r-inla.org) that is implemented in the R software were used to 
obtain Bayesian parameter estimates and predictions. The spatial effects (W) were 
computed using the Stochastic Partial Differential Equations (SPDE) approach 
implemented in INLA (Lindgren et al., 2011), which ensures that the continuous spatial 

https://oceancolor.gsfc.nasa.gov/
https://www.aviso.altimetry.fr/
https://climatedataguide.ucar.edu/
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domain (also known as Gaussian Random Field; GRF) is discretized into smaller spatial 
units (known as Gaussian Markov Random Field; GMRF). Default zero-mean Gaussian 
non-informative prior distributions with a variance of 100 were used for all of the 
parameters involved in the fixed effects as recommended by Held et al. (2010). 
 
As pointed out by Orue et al. (2020), the selection of explanatory variables was conducted 
by comparing all possible interactions, but only the best combination of variables was 
chosen based on the Watanabe-Akaike (WAIC) information criterion (Watanabe, 2010) and 
Log-Conditional Predictive Ordinations (LCPO) (Roos & Held, 2011). Specifically, lower 
WAIC values indicate a better fit, while lower LCPO scores represent better predictive 
quality. The best compromise between fit, parsimony and predictive quality occurs when 
smaller values the WAIC and LCPO are obtained. Thus, the best models were selected 
based on the mentioned compromise between low WAIC and LCPO values, containing 
only relevant predictors (i.e. those with 95% credibility intervals excluding zeros). 
 
Once the inference was carried out, we predicted the probability of jack mackerel presence 
in the area of interest using Bayesian kriging (Muñoz et al., 2013). The prediction in INLA 
was performed simultaneously with the inference, considering the prediction locations as 
points where the response is missing. The INLA SPDE module allows the construction of a 
Delaunay triangulation covering the region of interest for the prediction (Figure 1). Once 
the prediction is performed in the observed location, there are additional functions that 
linearly interpolate the results within each triangle into a finer regular grid. 

 

Figure 1. Map of the study area with jack mackerel observations (red dots). Delaunay triangulation 
used to calculate the Gaussian Markov random field for the SPDE approach. Observations 
(presence) are shown in red and pseudo-absences in blue. 
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3. Results 

In order to demonstrate the applicability of this method to evaluate the spatial structure of 
jack mackerel incorporating environmental information, a multi-fleet approach was used 
covering an extensive area in the South Eastern Pacific (Figure 1). The distribution of 
fishing sets shows a characteristic distribution of jack mackerel that extends from the 
coastal region off Peru and northern Chile to the high seas off central-southern Chile. 
Regarding environmental variables, those that were available and considered potentially 
relevant for migratory pelagic species such as jack mackerel were included. In particular, 
sea surface temperature and chlorophyll have been recognized as important covariates of 
jack mackerel distribution, as well as dissolved oxygen and the presence of minimun 
oxygen zone (Bertrand et al., 2016). Furthermore, wind-induced turbulence and eddy 
kinetic energy were incorporated as potential modulators of the water column stability 
(Figure 2). 
 

 

Figure 2. Maps of the covariates considered in the modelling of jack mackerel distribution in the 
southeastern Pacific: a) sea surface temperature; b) chlorophyll-a; c) eddy kinetic energy; d) wind 
induced turbulence; f) minimum oxygen depth. 
 
All the resulting models obtained from combining those five covariates were fitted and 
compared. WAIC was used as a measure for goodness-of-fit, while the logarithmic score 
(LCPO) measure the predictive quality of the models. As shown in Table 2 and Figure 3, 
both measures agree on the same model, with a reasonable predictive quality. In particular, 
the model comparison indicates that (apart from the spatial effect) the sea surface 
temperature, chlorophyll-a concentration, wind induced turbulence and the presence of 
minimal oxygen concentrations (less statistical significance) play a determining role in jack 
mackerel distribution.  
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Table 2. Comparison of the most relevant models for the jack mackerel B-HSMs selected using 
catch data. Statistics acronyms are: Watanabe Akaike Information Criterion (WAIC) and 
Logarithmic Cross Validated Score (LCPO). Predictor acronyms are: W= spatial effect, SST = Sea 
Surface Temperature, SSH = Sea Surface Height, TUR = Wind Induced Turbulence, ZMO = 
presence of minimum oxygen concentration (50 m), EKE= Kinetic Energy, CHL= Chlorophyll. 
 

 
 

 
Figure 3. Posterior distributions of the fixed effects for the jack mackerel B-HSMs. β1=sea surface 
temperature; β2=chlorophyll-a concentration; β3=wind-induced turbulence, and; β4= presence of 
minimum oxygen concentration (50 m);     

 

 

 

 

 

ID Model WAIC LCPO

1 beta0 + sst + clo + tur + zmo + W 1876.02996 0.56423327
2 beta0 + sst + clo + tur + W 1876.10477 0.55674368
3 beta0 + sst + clo + eke + tur + W 1876.42977 0.53756811
4 beta0 + sst + clo + eke + tur + zmo + W 1878.62428 0.54303407
5 beta0 + sst + tur + zmo + W 1883.76859 0.6119793
6 beta0 + sst + eke + tur + zmo + W 1886.46385 0.61817065
7 beta0 + sst + tur + W 1896.30608 0.71220925
8 beta0 + clo + tur + W 1896.82713 0.48600369
9 beta0 + sst + eke + tur + W 1899.20714 0.71779017
10 beta0 + clo + eke + tur + W 1899.50565 0.49008257
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As can be seen in Table 2 and Figure 3, most of covariates have a significant influence on 
driving the jack mackerel distribution. Table 3 shows a numerical summary of the posterior 
distribution of the effects shown in Figure 3. This results show that sea surface temperature 
affects the distribution of the species studied negatively, while the chlorophyll-a 
concentration, the wind induced turbulence and the presence of minimum oxygen 
concentration have a positive relationship. Results therefore indicate that during the study 
period  occurrence of jack mackerel was is greater in coastal and transition waters where 
due to the presence of active upwelling centers, the waters are colder and the concentration 
of the chlorophyll-a is higher with to respect to deeper waters. Unexpectedly, the highest 
occurrence of jack mackerel occurred where the minimum oxygen zone is shallower, which 
is associated with the presence of subsurface equatorial waters in the coastal sector from 
Peru to the central zone of Chile. The latter suggests that an oxygenated column of water of 
50 meters is appropriate for the common occurrence of jack mackerel. 
 
Table 3. Numerical summary of the marginal posterior distribution of the fixed effects for the best 
jack mackerel B-HSMs selected using catch data. For each variable, the mean, standard deviation, 
and a 95% credible central interval (Q0.025 - Q0.975) is provided, containing 95% of the probability 
under the posterior distribution.  
 

 

 

Figure 4 displays the spatial effect that indicates the intrinsic variability of the distribution 
of jack mackerel after excluding environmental variables. This component shows a strong 
effect, with positive values from the northern coast of Peru (~ 8°S) to the southern coast of 
Chile (~ 41°S) which extend offshore in a band that reaches 115° W in around 40°S. The 
highest values are observed in the coastal region of southern Peru and northern Chile, in 
addition to the oceanic zone off south-central Chile where the Chilean industrial fleet 
operates, as well as the international high seas fleet. Moreover, the mean of the range of the 
spatial effect of the normal area was about ~13 geographical degrees, resulting in a wide 
spatial correlation field for jack mackerel occurrence. The physical meaning of this value is 
that jack mackerel records are this distance or greater apart are not spatially correlated. 

Mean SD Q0.025 Q0.5 Q0.975

Parameters
beta0 -5.16 1.75 -8.76 -5.13 -1.78
sst -0.84 0.21 -1.24 -0.84 -0.43
clo 0.77 0.30 0.18 0.77 1.36
tur 0.96 0.13 0.70 0.95 1.21
zmo 1.24 0.96 -0.65 1.25 3.14

Hyperparameters
r 13.69 2.17 9.96 13.51 18.48
σ 5.37 0.62 4.28 5.33 6.69
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Figure 4. a) Mean and b) standard deviation for posterior distribution of the spatial effect W for jack 
mackerel distribution. 

The predicted probability map of jack mackerel occurrence using catch data shows high 
aggregation and spatial continuity in the hotspots. A narrow coastal band is observed 
between 8ºS and 30ºS where the probability drops sharply offshore in response to warmer 
and less productive waters in the oceanic region. In the offshore extension around 40ºS a 
small discontinuity was obtained, however the predicted probability expands towards a vast 
oceanic area off central-southern Chile (Figure 5a). The standard deviation map (Figure 5b) 
show very low values in the area where data were collected, while the error increases along 
the edges and off the modelled domain. Finally, one of the most important results is the 
continuity in the area of high probability for jack mackerel ocurrence by incorporating 
information from all fleets in a spatial modelling procedure, which suggests the need to 
advance in the use of joint databases in order to study the spatial structure of the jack 
mackerel population in the Southeast Pacific and its relationship with habitat variability. 
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Figure 5. Posterior a) mean and b) standard deviation for predictive distribution of the probability of 
jack mackerel presence in southeastern Pacific. 

 

4. Concluding remarks 

The use of hierarchical Bayesian spatial models (hBSMs) is presented for the study of jack 
mackerel distribution and its relationship with variables that characterize its habitat. One of 
the main advantages of this approach is that simultaneously deals with spatial 
autocorrelation issues and different sources of uncertainties. Multiple sources of uncertainty 
associated with both the observed data and the ecological process can be included in 
hBSMs, resulting in a stronger statistical inference. Moreover, the posterior predictive 
distribution of the probability of finding the species turns out to be a very suitable tool that 
allows us to express our uncertainties associated with the entire species habitat prediction. 
Another advantage is the computational gain of using the INLA approach, which allows us 
to easily make inferences and predictions within a highly structured model. 
 
Our results suggest that sea surface temperature affects the distribution of the jack mackerel 
negatively, while the chlorophyll-a concentration, the wind induced turbulence have a 
positive relationship. In addition, the results suggest the presence of jack mackerel in areas 
where the minimum oxygen zone reaches depths of 50 meters. These results confirm that 
jack mackerel is characterised by a high plasticity since it tolerates a large range of abiotic 
conditions. However, in its northern edge of distribution (5ºS - 25ºS) the jack mackerel 
habitat is restricted to a narrower coastal band due to the presence of warmer and less 
productive waters in the oceanic zone, while at the south of 30ºS, jack mackerel habitat 
expands offshore covering a larger area. 
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Regarding the database used in this study, it is worth mentioning that through the use of 
georeferenced information from different fleets that catch jack mackerel, it is possible to 
establish more robust statistical models to make inferences regarding the biophysical 
processes that drive the jack mackerel ocurrence throughout its distribution area. The latter 
is highly relevant to strengthen our understanding of the spatial dynamics of the species, its 
implications in the definition of its population structure and finally towards integrated 
management in the south Pacific. 
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